
The Pursuit of a Good Possible World:
Extracting Representative Instances of Uncertain Graphs

Panos Parchas1 Francesco Gullo2 Dimitris Papadias1 Francesco Bonchi2

1Department of Computer Science and Engineering 2Yahoo Labs
Hong Kong University of Science and Technology Barcelona, Spain

{pparchas, dimitris}@cse.ust.hk {gullo, bonchi}@yahoo-inc.com

ABSTRACT
Data in several applications can be represented as an
uncertain graph, whose edges are labeled with a probability
of existence. Exact query processing on uncertain graphs is
prohibitive for most applications, as it involves evaluation
over an exponential number of instantiations. Even approx-
imate processing based on sampling is usually extremely
expensive since it requires a vast number of samples to
achieve reasonable quality guarantees. To overcome these
problems, we propose algorithms for creating deterministic
representative instances of uncertain graphs that main-
tain the underlying graph properties. Specifically, our
algorithms aim at preserving the expected vertex degrees
because they capture well the graph topology. Conventional
processing techniques can then be applied on these instances
to closely approximate the result on the uncertain graph.
We experimentally demonstrate, with real and synthetic
uncertain graphs, that indeed the representative instances
can be used to answer, efficiently and accurately, queries
based on several properties such as shortest path distance,
clustering coefficient and betweenness centrality.

Categories and Subject Descriptors
E.1 [Data Structures]: Graphs and Networks; H.2.4
[Systems]: Query processing

Keywords
uncertain graph; possible world; representative

1. INTRODUCTION
Graphs constitute an expressive data representation

paradigm used to describe entities (vertices) and their rela-
tionships (edges) in a wide range of applications. Sometimes
the existence of the relationship between two entities is un-
certain due to noisy measurements, inference and prediction
models, or explicit manipulation. For instance, in biological
networks, vertices represent genes and proteins, while edges

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’14, June 22–27, 2014, Snowbird, UT, USA.
Copyright 2014 ACM 978-1-4503-2376-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2588555.2593668.

correspond to interactions among them. Since these inter-
actions are observed through noisy and error-prone experi-
ments, each edge is associated with an uncertainty value [4].
In large social networks, uncertainty arises for various rea-
sons [2]; the edge probability may denote the accuracy of
a link prediction [21], or the influence of one person on an-
other, e.g., in viral marketing [17]. Uncertainty can also be
injected intentionally for obfuscating the identity of users
for privacy reasons [6].

In all these applications the data can be modeled as an un-
certain graph (also called probabilistic graph), whose edges
are labeled with a probability of existence. This probability
represents the confidence with which one believes that the
relation corresponding to the edge holds in reality. Given
the wide spectrum of application domains, querying and
mining uncertain graphs has received considerable attention
recently.

More formally let G = (V,E, p) be an uncertain graph,
where p : E → (0, 1] is the function that assigns a prob-
ability of existence to each edge. Following the literature,
we consider the edge probabilities independent [29, 15, 16]
and we assume possible-world semantics [1, 9]. Specifi-
cally, the possible-world semantics interprets G as a set
{G = (V,EG)}EG⊆E of 2|E| possible deterministic graphs
(worlds), each defined by a subset of E. The probability of
observing any possible world G = (V,EG) ⊑ G is:

Pr(G) =
∏

e∈EG

p(e)
∏

e∈E\EG

(1− p(e)). (1)

The exponential number of possible worlds usually ren-
ders exact query evaluation prohibitive. Indeed, even simple
queries on deterministic graphs become #P-complete prob-
lems on uncertain graphs [32]. To better appreciate this fact,
consider a binary predicate q(G) in a deterministic graph G,
e.g., q is a reachability query, which returns true if two in-
put vertices are reachable from each other. In the context of
uncertain graphs, the corresponding reliability query would
ask for the probability of the vertices being reachable from
each other. In general, the probability of predicate q in un-
certain graphs is derived by the sum of probabilities of all
possible worlds G for which q(G) = true:

q(G) =
∑
G⊑G,

q(G)=true

Pr(G).

As one cannot afford to materialize 2|E| possible worlds,
a common solution is to apply Monte-Carlo sampling, i.e.,

to assess the query on a subset of randomly selected possi-
ble worlds. However, sampling is not always a viable option
for large graphs because: i) sampling a possible world has a
non-negligible cost as it requires generating a random num-
ber for each edge e ∈ E and ii) a large number of samples is
necessary to obtain a good approximation. Moreover, when
the query output is complex (e.g., a data mining task pro-
ducing a set of patterns) simple sampling is not sufficient:
even if one is able to evaluate the query over a sample, it is
not clear how to aggregate different samples.
In these cases the semantics of the analysis must be re-

defined for uncertain graphs, and new ad-hoc algorithms
must be developed. However, designing new methods for
data analysis problems is not always feasible. Organiza-
tions may have already invested in infrastructure (e.g., graph
databases, graph processing software, etc.) for deterministic
graphs, which they would wish to utilize, regardless of the
uncertainty inherent in the data.
Motivated by the above, we aim at removing the uncer-

tainty by producing representative instances of uncertain
graphs. Queries can then be processed efficiently on the de-
terministic instance using conventional graph algorithms. In
order to achieve accuracy, the representative instance should
preserve the underlying structure of the uncertain graph.
Starting from the observation that the vertex degree is one
of the most fundamental properties of the structure of a
graph, we conjecture that by preserving the degree of each
vertex we capture the essence of the underlying uncertain
graph, and thus accurately approximate other properties.
The importance of vertex degrees in capturing structural
graph properties has been well established in the literature
of deterministic graphs, including communication network
topologies [22] and complex network modeling [27].
We propose two methods for generating representative in-

stances that capture the vertex degrees: Average Degree
Rewiring (ADR) and Approximate B-matching (ABM). ADR
involves two phases: first, it generates an instance with the
same average vertex degree as the uncertain graph; then, it
randomly rewires edges, if they lead to better approximation
of the vertex degrees. ABM applies b-matching to obtain an
initial instance, which then improves using weighted maxi-
mum bipartite matching.
Our extensive experimental evaluation on real and syn-

thetic datasets confirms our conjecture: by preserving the
vertex degrees, our representative instances can also capture
several structural properties of the graph, including shortest
path distance, betweenness centrality and clustering coeffi-
cient.
Summarizing, the contributions of the paper are:

1. We introduce the novel problem of extracting repre-
sentative instances of uncertain graphs.

2. We propose ADR and ABM.

3. We experimentally demonstrate that the extracted
representatives can accurately answer a variety of com-
mon graph processing tasks.

The rest of the paper is organized as follows. Section 2
overviews the related work. Section 3 defines the problem
and presents two benchmark solutions. Sections 4 introduces
the ADR algorithm, while Section 5 describes ABM. Section
6 contains an extensive experimental evaluation on real and
synthetic datasets, and Section 7 concludes the paper.

2. BACKGROUND AND RELATED WORK
This section starts with an overview of previous work on

uncertain graphs. Then, it presents research on node degree
distribution due to its relevance to our problem. Finally, it
describes b-matching because it is used in our ABM method.

2.1 Uncertain graphs
Uncertain relational databases have been well studied

from different perspectives, such as SQL query evaluation,
mining, ranking and top-k queries [3]. However, in many ap-
plication domains, such as social, biological, and mobile net-
works, graphs serve as better models than relational tables.
There have been three main directions of research on uncer-
tain graphs: i) queries based on shortest-path distances, ii)
pattern mining (frequent, reliable, etc.), and iii) subgraph
(similarity) search.

Towards the first direction, Potamias et al. [29] study
k-nearest neighbors proposing a set of alternative shortest
path distance measures. They design methods to compute
these distances by combining sampling with Dijkstra’s al-
gorithm. Similarly, based on the possible world semantics,
Yuan et al. [34] return shortest-paths whose probability ex-
ceeds an input threshold. Jin et al. [16] propose two esti-
mators to boost the accuracy of distance-constrained reach-
ability queries, i.e, given two vertices s and t, return the
probability that the distance from s to t is below a user-
defined threshold.

In the second line of research, Zou et al. investigate min-
ing frequent subgraphs [38] and top-k maximal cliques [37]
in uncertain graphs. Jin et al. [15] study the problem of
finding subgraphs, which are highly reliable, i.e., for which
the probability of connectivity being maintained under un-
certainty is larger than a given threshold.

In the third direction of research, Yuan et al. [36] propose
a feature-based framework for subgraph search, while in [35]
they study subgraph similarity. Finally, in a rather different
kind of work [6], an uncertain graph is the output, rather
than the input of the problem. Specifically, uncertainty is
injected intentionally in a social graph for the sake of privacy,
with the aim of achieving a form of identity obfuscation for
the users.

2.2 Node degree distribution
According to [23], the degree distribution of a graph is the

most frequently used topology characteristic. For instance,
observations on the Internet’s degree distribution had a huge
impact on network topology research. Indeed, such studies
on the importance of node degrees on the topology of de-
terministic graphs constitute our main motivation for using
vertex degrees to capture the structure of uncertain graphs.

A sequence of non negative integers d = {d1, d2, · · · , dn},
with d1 ≥ d2 ≥ · · · ≥ dn is called graphic, if it is the de-
gree sequence of some simple graph G. In such case, we say
that G realizes the sequence d. Erdös and Gallai [10] de-
scribe the necessary and sufficient conditions for a sequence
to be graphic. The theory on graphic degree sequences finds
interesting applications in complex network modeling [22].
In order to generate topologies that capture the observed
data, a common approach is to construct graphs that re-
alize a predicted degree sequence of the complex network
[13]. However, some structural characteristics (e.g. density,
connectivity, etc.) depend heavily on the vertex processing
order in [13]. Thus, several techniques use the output of [13]

as a seed, and take additional steps to randomize the graph
[5], or induce specific characteristics, such as connectivity.
These techniques perform local search by swapping edges
in order to reach desired properties. We follow a similar
approach in ADR .
Another direction of research studies random processes on

networks (the spread of epidemics [28], the evolution of so-
cial networks [33] etc.) by constructing random graphs. The
popular Chung-Lu model [8] predicts the average distance of
random graphs constructed with a given expected degree se-
quence, in order to justify facts such as the small world phe-
nomenon [18]. Specifically, assuming a weight wu for each
vertex u, any edge (u, v) exists with probability ρ = wuwv∑

i wi
.

On the other hand, in our uncertain graph model edge prob-
abilities are given explicitly as an input to the problem, in-
stead of being related to vertex weights. Moreover, the con-
cept of representative graph instance does not apply to the
other graph models. In the experimental section we use the
Chung-Lu model to produce synthetic graphs.

2.3 b-Matching
Let an undirected graph G = (V,E), and a set of capacity

constraints b(u): V → N. A subgraph H = (V,EH) of G is
a b-matching of G, if the degree of each vertex u ∈ V in H is
at most b(u). The term b-matching is used interchangeably
to denote the subgraph H, or its edgeset EH , depending on
the context. If b(u) = 1 for all vertices of G, then b-matching
reduces to the well known matching in graph theory. A b-
matching is maximal, if the addition of any edge violates at
least one capacity constraint. A maximum b-matching is a
maximal b-matching with the largest number of edges.
Figure 1(a) shows an example graph, where the capacity

constraint b(ui) is shown next to ui. Figure 1(b) illustrates
a b-matched graph of Figure 1(a), where the matched edges
((u2, u5), (u3, u4)) are shown in bold. Since there is no vi-
olation of any capacity constraint, it is a valid b-matching.
Figure 1(c) depicts a maximal b-matching: adding any other
edge (e.g., (u1, u2)) would violate the capacity constraint of
at least one vertex (e.g., u2). Finally, Figure 1(d) illustrates
the maximum b-matching.
Numerous exact and approximate solutions have been

proposed for finding a maximum b-matching (see [14] for
a survey). If the capacity constraints are bounded by a

constant, the fastest exact algorithm is O(|E|3/2) [25]. A
greedy 1/2 approximation technique [14] solves the problem
in O(|E|). Several methods aim at weighted versions of the
problem [24].

u2

u1u5

u3

u6u4

2 2

1 1 1 1

(a) G and constraints

2 2

1 1 1 1

u2

u1u5

u3

u6u4

(b) b-matching of G

2 2

1 1 1 1

u2

u1u5

u3

u6u4

(c) maximal b-matching

2 2

1 1 1 1

u2

u1u5

u3

u6u4

(d) maximum b-matching

Figure 1: b-matching example

3. PROBLEM DEFINITION AND BENCH-
MARK SOLUTIONS

Let G = (V,E, p) be an undirected uncertain graph, where
V is a set of vertices, E ⊆ V × V is a set of edges, and
p : E → (0, 1] is a function that assigns a probability of
existence to each edge. For the sake of brevity, we denote
the probability p(e) of any edge e ∈ E with pe. We assume
independent edge probabilities and possible world semantics,
i.e., G is interpreted as a set {G = (V,EG)}EG⊆E of 2|E|

possible deterministic graphs (worlds), each defined by a
subset of E.

Since most query processing tasks are prohibitively expen-
sive for large uncertain graphs, we propose the extraction of
a deterministic representative instance G∗ ⊑ G that cap-
tures the underlying properties of G. Then, queries on the
uncertain G can be efficiently processed using deterministic
algorithms on G∗. In the following, we discuss desired prop-
erties of a representative instance, and introduce benchmark
solutions for their generation. Table 1 contains the most
common symbols throughout the paper.

Table 1: List of frequent symbols used in the paper.

Symbol Definition
G uncertain graph
G instance (possible graph) of G
G∗ representative instance of G

degu(G) degree of vertex u in G
[degu(G)] expected degree of vertex u in G
[deg(G)] expected average degree of G
disu(G) discrepancy of u in G, i.e., degu(G)− [degu(G)]
∆(G) discrepancy of an instance G of G
P sum of probabilities

∑
e∈E pe

3.1 Representative instance
The representative instance G∗ should conform well with

the structural properties of G in expectation. A direct ex-
traction of the “expected graph” from all possible worlds
yielded by G is not easily achievable, as the definition of ex-
pected graph is intrinsically ill-posed. Indeed, the notion of
expected value of any probability distribution needs i) an
ordering among the points/objects of the domain of the dis-
tribution, and ii) a way of averaging (aggregating) among
such objects. In our context the domain objects are graphs,
hence it is not clear how to carry over either i) or ii).

Motivated by the above, we propose a criterion for ex-
tracting a representative instance that aims at preserving
the expected degree of individual vertices. Particularly, our
goal is to find a graph G∗ ⊑ G such that the degree of any
vertex u in G∗ is as close as possible to the expected degree
of u in G. Formally, given an uncertain graph G = (V,E, p)
and a vertex u ∈ V , the expected degree of u in G is the
summation of the probabilities of u’s adjacent edges:

[degu(G)] =
∑

e=(u,v)∈E

pe

When the uncertain graph is implied, we write for conve-
nience [degu]. Moreover, we define the discrepancy disu(G)
of a vertex u in an instance G ⊑ G as the difference of
u′s degree in G to its expected degree, i.e., disu(G) =
degu(G)− [degu]. If the graph instance is implied, we equiv-
alently write disu. Given the individual vertex discrepancies

disu, we define the overall discrepancy ∆ of a possible graph
G as follows:

Definition 1. Given an uncertain graph G = (V,E, p),
the discrepancy of any possible graph G ⊑ G is defined as

∆(G) =
∑
u∈V

|disu(G)| (2)

The problem we tackle in this work is the following:

Problem 1 (Representative Instance). Given an
uncertain graph G = (V,E, p), find a possible graph G∗ ⊑ G
such that:

G∗ = arg min
G⊑G

∆(G).

Characterizing the complexity class of Problem 1 is non-
trivial and represents an interesting open question. Our
conjecture is that the problem is hard, or at least not solv-
able exactly in reasonable time for large graphs. To this
purpose, note that Problem 1 can alternatively be formu-
lated as an integer linear programming problem. Each edge
e ∈ E is assigned a binary variable xe = {0, 1}, where
xe = 1 if and only if e is included in the result set. Then,
the discrepancy of a vertex u in G can be expressed as
disu(G) =

∑
e=(u,v)∈E(xe − pe). Thus, Problem 1 becomes:

min |A(x− p)|

x = {0, 1}|E| (3)

where p = (0, 1]|E| is the vector containing the edge proba-

bilities of the input uncertain graph G and A = {0, 1}|V |×|E|

is the incidence matrix of G. The formulation in (3) corre-
sponds to a special case of the closest vector problem, which
is known to be NP-hard [26]. Moreover, as discussed in Sec-
tion 5, when all expected degrees are integers, Problem 1 can
be solved by b-matching algorithms, among which the fastest
runs in O(|E|3/2) time [25]. Within this view, given that our
main goal is to provide solutions that are scalable enough
to deal with the large size of today’s real-world graphs, we
directly aim at approximate, yet efficient algorithms.
Representative instances vastly accelerate query process-

ing on uncertain graphs because: i) they eliminate the over-
head of generating a large number of samples and ii) the
query is executed once (on the representative) instead of
numerous times (for each sample). Consider for example a
nearest-neighbor query. State-of-the-art approaches to this
query type perform Dijkstra expansions on multiple samples
[29]. Depending on the definition of the distance measure,
expansion for some samples can be avoided or terminated
early, when it cannot improve the current result. Neverthe-
less, the method has usually very high cost. On the other
hand, the same query in our framework can be processed
efficiently by applying any deterministic nearest neighbor
algorithm on the representative G∗. As shown in our ex-
perimental evaluation, the representatives extracted by our
algorithms indeed capture well the relevant properties of G,
in this case shortest path distances. Thus, the query on G∗

is expected to return a good approximation of the nearest
neighbor set.

3.2 Benchmark solutions
A straightforward way to generate a representative of an

uncertain graph is to consider the instance with the highest

Algorithm 1 Greedy Probability GP

Input: uncertain graph G = (V,E, p)
Output: approximate representative G∗ = (V,E∗)
1: E∗ ← ∅
2: sort E in non-increasing order of their probabilities
3: for each e = (u, v) ∈ E do
4: if |disu + 1|+ |disv + 1| < |disu|+ |disv| then
5: E∗ ← E∗ ∪ {e}
6: G∗ ← (V,E∗)

probability to incur [29]. According to Equation 1, this most
probable (MP) instance corresponds to the graph containing
all the edges e that have probability pe ≥ 0.5. Since MP
does not conform with any structural property of G, it is
expected to be a poor representative. As an example, if all
edges in G have probability < 0.5, then MP is a graph with
no edges.

An alternative benchmark, namely Greedy Probability
(GP), aims at reducing the overall discrepancy using a greedy
approach. Specifically, GP first sorts the edges of the graph
in non-increasing order of their probabilities. Then, at
each iteration, the algorithm considers an edge e = (u, v)
of the sorted list, and includes it to the result set, if
|disu + 1| + |disv + 1| < |disu| + |disv|, i.e., the addition
of e decreases the total discrepancy. The complexity of the
algorithm is O(|E| log |V |) because it is dominated by the
sorting step.

Algorithm 1 presents the pseudocode of GP. Intuitively,
each edge (u, v) affects only the degrees of vertices u, v.
Thus, if the condition in line 4 is satisfied, the value of
Equation 2 decreases, leading to a better solution. Due to
the initial sorting, the most probable edges are considered
first. Such edges have large contribution to the expected
degrees of the incident vertices, and at the same time they
lead to a highly probable representative. However, due to its
”blind” search strategy, GP may fail to find a good solution,
as shown in the example of Figure 2.

Figure 2(a) illustrates an uncertain graph and the asso-
ciated edge probabilities. Next to each vertex we include
its expected degree, derived from the probabilities of adja-
cent edges. At the first iteration, GP picks the edge (u1, u2)
with the highest probability and adds it to the result set
E∗. Figure 2(b) shows E∗ after the first iteration, where
the expected degrees of the vertices have been replaced by
their discrepancies. At the second iteration, GP considers
edge (u2, u3). The inclusion of (u2, u3) in E∗, decreases the
total discrepancy of u2 and u3 from 1.04 to 0.98 (see Fig-
ure 2(c); edges of E∗ are bold). The final iteration, discards
edge (u3, u4) since it would increase the discrepancy by 0.99.
Thus, the representative returned by GP contains edges
{(u1, u2), (u2, u3)} with ∆ = 0.48+0.97+0.01+0.50 = 1.96.

The optimal solution shown in Figure 2(d), contains a sin-
gle edge (u2, u3) with ∆ = 0.52 + 0.03 + 0.01 + 0.50 = 1.06.
Note that for the same example, the representative produced
by MP would include all edges since their probabilities are
at least 0.5. This would yield an even worse solution than
that of GP with ∆ = 2.95. To overcome the problems of
the benchmark solutions, in the following sections we pro-
pose more sophisticated algorithms that aim at explicitly
improving discrepancy through targeted search.

u2

u1

u3

u4

1.03 1.01

0.52 0.50

0.52

0.51

0.50

(a) uncertain graph

u2

u1

u3

u4

-0.03 -1.01

0.48 -0.50

(b) first iteration of GP

u2

u1

u3

u4

0.97 -0.01

0.48 -0.50

(c) second iteration of GP

u2

u1

u3

u4

-0.03 -0.01

-0.52 -0.50

(d) optimal instance

Figure 2: GP example

4. AVERAGE DEGREE REWIRING (ADR)
Average Degree Rewiring (ADR) involves two phases: 1)

it creates an instance G0 = (V,E0) of the uncertain graph
that preserves the average vertex degree and 2) it iteratively
improves G0 by rewiring, i.e., replacing edges in E0, so that
the total discrepancy is reduced.
The following lemma describes the efficient computation

of the expected average degree for an uncertain graph.

Lemma 1. The expected average degree [deg(G)] of an un-
certain graph G = (V,E, p), is [deg(G)] = 2

|V |P, where P is

the sum of all the edge probabilities in G.

Proof. By definition, the average degree deg(G) of a de-
terministic graph G is equal to deg(G) = 1

|V |
∑

u∈V degu.

Due to the linearity of expectation, the expected average
degree is:

[deg(G)] =

[
1

|V | ·
∑
u∈V

degu

]
=

1

|V | ·
∑
u∈V

[degu] =

=
2

|V | ·
∑
e∈E

pe =
2

|V | ·P

Given Lemma 1, a representative that preserves [deg(G)]
should contain P edges. Initially, ADR rounds P to the
closest integer ⌊P⌉ and sorts the edges on descending order
of their probabilities. Consequently, it iterates through the
sorted list, and samples each edge e with probability pe,
until it has included ⌊P⌉ edges. Algorithm 2 illustrates the
pseudocode of ADR, where lines 1-7 correspond to Phase 1.
Phase 2 starts with E0. At each iteration i, let the current

set of edges be Ei. For each node u ∈ V , ADR randomly
picks two edges e1 = (u, v) ∈ Ei and e2 = (x, y) ∈ E \ Ei

(line 10-11) and computes d1 ← |disu − 1| + |disv − 1| −
(|disu|+ |disv|) and d2 ← |disx + 1|+ |disy + 1| − (|disx|+
|disy|). Specifically, d1 is the difference of the absolute dis-
crepancies of u and v, caused by the removal of e1. Accord-
ingly, d2 is the difference of the absolute discrepancies of x
and y caused by the addition of edge e2. ADR replaces e1
with e2 if d1 + d2 < 0, i.e., the swapping of edges decreases
the overall discrepancy. Since the total number of edges re-
mains ⌊P⌉, the expected average degree of G is preserved
throughout the process. The procedure terminates after a
user-defined number of iterations steps. The value of steps

Algorithm 2 Average Degree Rewiring (ADR)

Input: uncertain graph G = (V,E, p), steps
Output: approximate representative G∗ = (V,E∗)
1: E0 ← ∅, i← 0
2: P←

∑
e∈E pe

3: sort E in non increasing order of their probabilities
4: while |E0| < ⌊P⌉ do
5: e← E.next(); r ← random number ∈ [0, 1]
6: if r ≤ pe then
7: E0 ← E0 ∪ e

8: for i = 1..steps do
9: for each u ∈ V do
10: pick a random edge e1 = (u, v) from Ei

11: pick a random edge e2 = (x, y) from E \ Ei

12: d1 ← |disu − 1|+ |disv − 1| − (|disu|+ |disv|)
13: d2 ← |disx + 1|+ |disy + 1| − (|disx|+ |disy|)
14: if d1 + d2 < 0 then
15: Ei+1 ← (Ei − {e1}) ∪ {e2}
16: E∗ ← Ei

depends on the desired trade-off between quality and effi-
ciency. The running time of ADR is O(|E| log |V |+ steps).

We illustrate the application of ADR on the uncertain
graph of Figure 3(a), where edge probabilities are de-
noted with italics, and the expected degree is shown next
to each vertex. Initially, ADR computes P = 4.4 and
rounds it to the closest integer ⌊P⌉ = 4. Then, it sam-
ples 4 probable edges of the graph and forms the set E0 =
{(u2, u3), (u2, u5), (u2, u9), (u7, u8)}. Figure 3(b) depicts the
edges of E0 with bold lines, and shows the resulting node
discrepancies. The value of the total discrepancy at this
stage is ∆ = 3.8. Next, ADR starts the second phase.
Assume that at iteration 0 the algorithm randomly con-
siders the replacement of e1 = (u2, u5) ∈ E0 with e2 =
(u3, u4) ∈ E \E0. Since d1 = 0.6+0.45−(0.40+0.55) = 0.1,
d2 = 0.1 + 0.7− (0.9 + 0.3) = −0.4 and d1 + d2 = −0.3 < 0,
the edges are swapped. Intuitively, the swapping reduces
the overall discrepancy by |d1 + d2|. The discrepancy of
the new instance E1 = {(u2, u3), (u2, u9), (u3, u4), (u7, u8)}
is ∆′ = ∆− |d1 + d2| = 3.5.

u2

u1u5

u3

u6
u4

1.4

0.3

1

0.4 0.3 0.30.45

u7

0.2

2.6 1.9

0.45 0.4 0.3 0.3

u8

0.9

1

0.1

0.45

u9

0.45

(a) initial graph

u2

u1u5

u3

u6
u4

-0.4

0.3

1

0.4 0.3 0.30.45

u7

0.2

0.4 -0.9

0.55 -0.4 -0.3 -0.3

u8

0.9

0

0.1

0.45

u9

0.55

(b) after Phase 1

Figure 3: ADR example

5. APPROXIMATE B-MATCHING (ABM)
This section presents ABM, which stands for Approximate

B-Matching. We first discuss the motivation behind ABM,
and then provide the algorithmic framework.

5.1 Motivation
Recall from Section 2.3 that the maximum b-matching

problem takes as input a deterministic graph G = (V,E)

and a capacity constraint b(u) for every u ∈ V . The output
is a set of edges Em ⊆ E, such that each vertex u of V is
incident to at most bu edges of Em.
We next investigate the relationship of our problem to

b-matching, starting with the special case where all the ex-
pected degrees of G are integers, i.e., [degu] ∈ Z, ∀u ∈ V .
As we shall prove shortly, the optimal instance (i.e., the one
that minimizes the overall discrepancy ∆) is given by a max-
imum b-matching computed on the uncertain graph G with
capacity constraints [degu] for each vertex u ∈ V .

Lemma 2. Assume that [degu] ∈ Z, ∀u ∈ V . Then, there
is at least one optimal instance G∗ for which degu(G

∗) ≤
[degu], for all u ∈ V .

Proof. Assume an optimal solution G∗ = (V,E∗) that
contains illegal vertices, i.e., vertices u ∈ V with degu(G

∗) >
[degu]. E

∗ cannot contain an edge (u, v) between two illegal
vertices u and v, otherwise G∗ is not optimal (i.e., the ex-
clusion of edge (u, v) would decrease the overall discrepancy
∆). Thus, an illegal vertex u can only be adjacent to legal
vertices, i.e., vertices x ∈ V for which degx(G

∗) ≤ [degx].
Assume an edge e = (u, x) ∈ E∗, where u is illegal and x is
legal. We first prove that if we remove edge e from E∗, then
the remaining graph G′ = (V,E∗ − {e}) is also an optimal
instance.
Specifically, disu(G

∗) > 0 whereas disx(G
∗) ≤ 0, and

disu(G
′) = disu(G

∗)−1 ≥ 0 whereas disx(G
′) = disx(G

∗)−
1 < 0. The overall discrepancy of G∗ is:
∆(G∗) = |disu(G∗)| + |disx(G∗)| +

∑
v ̸=u,x∈V

|disv(G∗)| =

disu(G
∗)− disx(G

∗) +
∑

v ̸=u,x∈V

|disv(G∗)|.

Similarly, the discrepancy of G′ is:
∆(G′) = |disu(G′)| + |disx(G′)| +

∑
v ̸=u,x∈V

|disv(G′)| =

(disu(G
∗)− 1) + (1− disx(G

∗)) +
∑

v ̸=u,x∈V

|disv(G′)|.

Since graphs G∗ and G′ only differ by the edge (u, x),∑
v ̸=u,x∈V

|disv(G∗)| =
∑

v ̸=u,x∈V

|disv(G′)|, and thus ∆(G∗) =

∆(G′). By applying the above argument to all the illegal
vertices of G∗, we construct an optimal instance that con-
tains only legal vertices.

Theorem 1. Let G = (V,E, p) be an uncertain graph
where [degu] ∈ Z, ∀u ∈ V . An optimal solution of the
Representative Instance problem on input G is given by
solving a maximum b-matching on graph G using [degu] as
capacity constraint of vertex u.

Proof. Using the previous lemma, there is always an op-
timal solution G∗ = (V,E∗) that ensures that degu(G

∗) ≤
[degu], for all u ∈ V . Thus, we can remove the absolute
values from the definition of ∆:

∆(G∗) =
∑
u∈V

∣∣degu(G∗)− [degu]
∣∣ =

=
∑
u∈V

(
[degu]− degu(G

∗)
)
=

∑
u∈V

[degu]−
∑
u∈V

degu(G
∗)

Since the expected degrees [degu] are fixed, this is equiv-
alent to maximizing

∑
u∈V degu(G

∗), which in turn leads
to the maximization of |E∗|. Therefore, G∗ is a maximum
b-matching on G with capacity constraints [degu].

According to the above theorem, a maximum b-matching
on graph G leads to the optimal solution if all expected

degrees are integers. The fastest algorithm for this compu-
tation [25] has time complexity O(|E|3/2).

5.2 Algorithm
Since actual uncertain graphs have real valued expected

degrees, the b-matching technique of the previous section
cannot be applied directly. Moreover, the exact solution
to the real-valued problem is expected to be at least as
hard as in the case of integers, which is already expensive
(O(|E|3/2)) for large graphs. Thus, we propose a novel ap-
proximation technique, based on matching.

The main idea is to extract an approximate instance in two
phases. In Phase 1, ABM rounds the expected vertex degrees
to the closest integers, and computes a maximal b-matching
using the rounded values as capacity constraints. In the
second phase, ABM partitions the vertices according to their
discrepancy. Then, it extracts additional edges that improve
the total discrepancy ∆, by performing a bipartite matching.
We use approximation techniques for the two phases (i.e., b-
matching and bipartite matching) for efficiency reasons.

Algorithm 3 Approximate b-Matching (ABM)

Input: uncertain graph G = (V,E, p)
Output: approximate representative G∗ = (V,E∗).
1: calculate the expected degree [degi] for all vertices in V .
2: Em ← 0, degu ← 0

// Phase 1
3: let bi = round([degi]) to the closest integer
4: for each e = (u, v) ∈ E do
5: if degu < bu AND degv < bv then
6: Em ← Em ∪ {e}
7: degu ← degu + 1; degv ← degv + 1

// Phase 2
8: A← ∅,B← ∅,C← ∅
9: for each u ∈ V do
10: let disu = degu − [degu]
11: if disu ≤ −0.5 then
12: A← A ∪ {u}
13: else if −0.5 < disu < 0 then
14: B← B ∪ {u}
15: else
16: C← C ∪ {u}
17: E′ ← E \ Em

18: for each edge e = (u, v) ∈ E′ do
19: weight= |disu|+ 2|disv| − |1 + disu| − 1
20: if (u ∈ A) AND (v ∈ B) AND (weight> 0) then
21: w(e)← weight
22: else
23: discard e
24: Let G′ = ((A ∪ B), E′,W) where W : w(e)→ R
25: EBP = bipartite(G′)
26: E∗ = Em ∪ EBP

Algorithm 3 contains the pseudocode of ABM. Phase 1
(lines 3-7) corresponds to a greedy approximate maximum
b-matching [14] that considers all edges in random order.
For each edge e = (u, v), if the capacity constraints of both
vertices u and v are not violated, then e is inserted into the
result set Em, and the degrees of u and v are incremented.
After all edges have been considered, Em contains a max-
imal b-matching of G, whose cardinality is at least half of
that of the maximum [14]. Figure 4 applies ABM on the

uncertain graph of Figure 3(a). Figure 4(a) shows the ver-
tex degrees after rounding. ABM considers in turn edges
(u2, u3), (u7, u8), which are added to Em. After that, no
other edge can be included in Em because it would cause a
capacity violation. Figure 4(b) includes the node discrepan-
cies after the termination of Phase 1, with respect to their
original (i.e., before rounding) degree.
Based on their discrepancies, lines 8-16 partition the ver-

tices into three groups A, B and C. A contains vertices
with discrepancy disu ≤ −0.5, B the vertices for which
−0.5 < disu < 0, and C the rest, i.e., vertices with disu ≥ 0.
The partitioning is complete (i.e., A∪B∪C = V) and there
is no overlap (i.e., A ∩ B ∩ C = ∅). In our running example
the groups are A = {u2, u3}, B = {u1, u4, u5, u6, u7, u9} and
C = {u8}.

u2

u1u5

u3

u6
u4

1

0.3

1

0.4 0.3 0.30.45

u7

0.2

3 2

0 0 0 0

u8

0.9

1

0.1

0.45

u9

0 u2

u1u5

u3

u6
u4

-0.4

u7

-1.6
-0.9

-0.45 -0.4 -0.3 -0.3

u80

u9

-0.45

(a) rounded graph G (b) result of b-matching

A B

u2

u3

u1

u5

u4

u6

u7

0.8

0.9

0.8

0.6

0.4

0.4

u9
0.9

-1.6

-0.9

-0.4

-0.45

-0.45

-0.3

-0.3

-0.4

A B

u2

u3

u1

u5

u4

u6

u70.6

0.4

0.4

u9
0.1

-0.6

-0.9

(c) input of bipartite (d) after first iteration

u2

u1u5

u3

u6
u4

u7

u8

u9

0.55

0.55 -0.4

0.4

-0.3

0.1

0.6

0

-0.3

(e) G∗ of ABM

Figure 4: ABM example

Intuitively, A contains vertices, whose absolute discrep-
ancy will decrease by the addition of an edge. B contains
vertices whose absolute discrepancy will increase (after the
addition of an edge) by less than 1. C contains vertices that
have already reached or exceeded their expected degree1;
thus, a new adjacent edge will increase their discrepancy by
1. Edges between vertices of A (e.g., (u2, u3)) have been
added to the result set Em during Phase 1. The following
lemmas discuss the potential for including additional edges,
depending on the group of their incident vertices.

Lemma 3. Let an edge (u, v) where u, v ∈ B. Including
edge (u, v) in the result set cannot improve the overall dis-
crepancy ∆.

1Such vertices are possible because b-matching is performed
on the rounded degrees.

Proof. Since both vertices belong to the set B, it holds
that −0.5 < disi < 0 for i = {u, v}. Thus, their total
discrepancy is d1 = |disu|+ |disv| < 1. The addition of edge
(u, v) will change the discrepancies to dis′u = disu + 1 >
0.5, and dis′v > 0.5. Thus, the total discrepancy becomes
d2 = |dis′u|+ |dis′v| > 1. Since d1 < d2, edge (u, v) increases
∆.

Lemma 4. Let an edge (u, v) where u ∈ C. Including edge
(u, v) in the result cannot improve the overall discrepancy ∆.

Proof. Since u has exceeded its expected degree, adding
edge (u, v) will increase disu by exactly 1. On the other
hand, the absolute discrepancy of v can increase or decrease
by at most 1. Thus, ∆ can only increase (if v ∈ B or v ∈ C)
or remain the same (if v ∈ A).

The above lemmas state that the inclusion in the result
of an edge that connects i) two vertices in B or ii) a vertex
in C with any vertex, cannot improve ∆. Therefore, after
Phase 1, the only possible additions are edges that connect
vertices in A with vertices in B. Let such an edge e = (a, b)
with a ∈ A and b ∈ B: if the addition of e in the result
set decreases the absolute discrepancy of a more than it
increases the absolute discrepancy of b, then it improves ∆.
The following lemma, quantifies this improvement.

Lemma 5. Let e = (a, b) where a ∈ A and b ∈ B. Includ-
ing edge e in the result set changes the overall discrepancy
∆ by ge = |disa|+ 2|disb| − |disa + 1| − 1.

Proof. The total discrepancy of vertices a and b before
(a, b) is, d1 = |disa| + |disb|. After adding the edge, it be-
comes d2 = |disa + 1| + (1 − |disb|). We define the gain
ge of e as the difference between the two discrepancies, i.e.,
ge = d1− d2 = (|disa|+ |disb|)−

(
|disa +1|+(1−|disb|)

)
=

|disa| + 2|disb| − |disa + 1| − 1. If ge is positive, edge e
decreases ∆; otherwise it increases it. If disa ≤ −1, then
|disa + 1| = |disa| − 1, and the gain becomes ge = 2|disb|,
i.e., ge depends only on |disb|.

An edge e can improve the overall discrepancy, only if
ge > 0. Lines 18-23 of Algorithm 3 consider each edge e in
E′ = E −Em connecting vertices in A and B. If ge > 0, e is
inserted in a graph G′ = (A∪B,E′,W) where W : E′ → R,
with w(e) = ge. Figure 4(c) shows the graph G′, including
the vertex discrepancies and edge weights, which correspond
to their gains. The next question is how to efficiently select
the subset of edges in E′ that minimizes ∆. Towards this,
subroutine bipartite(G′) (line 25) performs an approximate
maximum weight bipartite matching on graph G′ with a
twist: a vertex of A may be matched with multiple vertices
of B, if it has high absolute discrepancy.

Algorithm 4 illustrates bipartite. Initially, the edges of E′

are sorted on non-increasing order of their weights/gains.
Let Q be a priority queue that contains the sorted list. At
each iteration, the head e = (a, b) of Q is inserted into the
result set. The inclusion of (a, b) changes the discrepancies
of a and b. Specifically, the new discrepancy of b becomes
positive; thus, according to Lemma 4, edges adjacent to b
cannot reduce ∆, and are removed from Q. Then, bipartite
updates the discrepancy of a; let disa be the new value. If
disa ≤ −1, from Lemma 5, the weights of the other edges
(a, x) incident to a do not change since they depend only on
|disx|. If −1 < disa < −0.5, bipartite updates the weights of

these edges using the gain definition of Lemma 5 (line 10).
If a weight becomes negative, the edge is removed. Finally,
if disa > −0.5, vertex a cannot further improve ∆ as it does
not belong to group A anymore; thus, it is discarded and
all adjacent edges (a, x) are expunged from Q. The function
terminates when Q becomes empty.
Continuing the example of Figure 4(c), bipartite first picks

the heaviest edge (u2, u5) and adds it to the result. Then, it
updates the discrepancy of u2 to disu2 = −1.6 + 1 = −0.6;
since −1 < disu2 < −0.5, the weights of edges adjacent to
u2,

(
i.e., (u2, u1), (u2, u7) and (u2, u9)

)
must be updated as

well. Edges (u2, u1) and (u2, u7) yield a negative weight, and
are discarded. Figure 4(d) shows the bipartite graph after
the first iteration. The next edge (u3, u7) in Q is included in
the result, updating the discrepancy of vertex u3 to disu3 =
−0.9+1 = 0.1. Since disu3 > 0, all edges adjacent to u3 are
discarded. Finally, bipartite extracts the last edge (u2, u9)
of Q, adds it to the result and terminates.
Figure 4(e) shows the final output of ABM, which com-

bines the edges added during the two phases. The discrep-
ancy of the extracted graph is 3.2. The total cost of ABM
includes the linear-time processing of edges in Phase 1, and
the sorting and queuing operations of Phase 2 on E′. Each
edge of E′ can be processed at most |B| times. Therefore,
the complexity of ABM is O(|E| + |B||E′| log |E′|), where
|E′| ≤ |E|.

Algorithm 4 bipartite

Input: bipartite graph G = (A ∪B,E′,W)
Output: the set of edges EBP ⊆ E′ with high gain for ∆
1: EBP ← ∅
2: sort the edges e ∈ E′ on non-increasing order of their

weights w(e) and add them in a priority queue Q.
3: while Q ̸= ∅ do
4: e = (a, b)← Q.next()
5: EBP ← EBP ∪ {e}
6: discard all edges in Q incident to b
7: disa ← disa + 1
8: if −1 < disa < −0.5 then
9: for each edge e′ = (a, x) ∈ E′ do
10: w(e′)← |disa|+ 2|disx| − |disa + 1| − 1
11: if w(e′) > 0 then
12: update order of e′ in Q
13: else
14: discard e′

15: else if disa > −0.5 then
16: for each edge e′ = (a, x) ∈ E′ do
17: discard e′

6. EXPERIMENTS
In this section, we compare ADR (Average Degree

Rewiring) and ABM (Approximate B-Matching) against the
two benchmark approaches MP (Most Probable) and GP
(Greedy Probability). Our goal is to show that in addition
to minimizing the node discrepancy, the representatives pre-
serve other important graph properties. To this end, we
measure the accuracy of the methods on the following met-
rics:

• Vertex degree corresponds to the percentage of vertices
having a certain degree value. It is the property most
closely related to the objective function of our algo-

Table 2: Characteristics of real datasets

edge probabilities:
dataset vertices edges mean, SD, quartiles

BioMine 1 008 201 13 485 878 0.27± 0.21, {0.12, 0.22, 0.36}
DBLP 684 911 4 569 982 0.14± 0.11, {0.09, 0.09, 0.18}
Flickr 78 322 10 171 509 0.09± 0.06, {0.06, 0.07, 0.09}

rithms, and its significance to the graph structure has
been well established [22].

• Clustering coefficient is a measure of how close neigh-
bors of the average k-degree vertex are to forming a
clique. Specifically, it is the ratio of the average number
of edges between the neighbors of k-degree vertices to
the maximum number of such links. It is an important
metric for search strategies [11] and social networks [19].

• Shortest-path distance is the percentage of pairs at a cer-
tain distance, over all pairs of reachable vertices. This
metric is crucial for spatial queries [29], routing proto-
cols, and in general, any task involving shortest path
computations.

• Betweenness centrality is a measure of the node’s im-
portance in the graph: it corresponds to the ratio of
shortest paths that pass through the node over all pairs
of shortest paths. It has been used widely to assess link
value of ecological graphs [12], and router utilization of
communication networks [31].

The ground truth (i.e., the expected value of the mea-
sure on the uncertain graph) can be computed exactly only
for the vertex degree, by summing up the probabilities of
the adjacent edges for each vertex. All the other metrics
are approximated by Monte Carlo sampling. Specifically,
we create a number of random instances of the input un-
certain graph, and we approximate the expected value of
each metric by the weighted average of the sampled graphs.
We use 1000 samples since it has been shown [29, 16] that
they usually suffice to achieve accuracy convergence. How-
ever, shortest-path distance and betweenness centrality are
very expensive because they involve all-pairs-shortest-path
computations. Their evaluation over 1000 samples of large
graphs is prohibitive. To overcome this problem, given an
uncertain graph, we use forest fire [20] to create a smaller
subgraph that has similar properties and we perform the
evaluation on that subgraph.

Section 6.1 compares our techniques on vertex degree and
clustering coefficient, using real uncertain graphs. Sec-
tion 6.2 applies forest fire to reduce the size of the real
graphs, in order to evaluate shortest-path distance, and be-
tweenness centrality. Finally, Section 6.3 considers all met-
rics on synthetic graphs.

6.1 Real graphs
Table 2 summarizes the main characteristics of the uncer-

tain graphs from different real world scenarios, used in our
experiments.

Flickr [29](www.flickr.com): a social network, where the
probability of an edge between two users is computed as-
suming homophily, i.e., the principle that similar interests
indicate social ties. Homophily is measured by the Jaccard
coefficient of the interest groups of the two users.

DBLP [29, 16] (www.informatik.uni-trier.de/~ley/db/):
a database of scientific publications and their authors. Two

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

MP GP ADR ABM

D
is

cr
ep

an
cy

(a) Flickr

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

MP GP ADR ABM

D
is

cr
ep

an
cy

(b) DBLP

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

MP GP ADR ABM

D
is

cr
ep

an
cy

(c) BioMine

Figure 5: Box plots of the distribution of discrepancy per node

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0 50 100 150 200 250 300 350 400

%
 o

f
v
er

ti
ce

s

degree

Expected

MP

GP

ADR

ABM

(a) Flickr

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0 20 40 60 80

%
 o

f
v
er

ti
ce

s

degree

Expected

MP

GP

ADR

ABM

(b) DBLP

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

 0 500 1000 1500 2000 2500

%
 o

f
v
er

ti
ce

s

degree

Expected

MP

GP

ADR

ABM

(c) BioMine

 0

 0.05

 0.1

 0.15

 0.2

 0 2 4 6 8 10

%
 o

f
v
er

ti
ce

s

degree

Expected

MP

GP

ADR

ABM

(d) Flickr

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 2 4 6 8 10

%
 o

f
v
er

ti
ce

s

degree

Expected

MP

GP

ADR

ABM

(e) DBLP

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 2 4 6 8 10

%
 o

f
v
er

ti
ce

s

degree

Expected

MP

GP

ADR

ABM

(f) BioMine

Figure 6: Vertex degree (a)-(c) and zoom-in (d)-(f) for most probable degrees (real graphs)

authors are connected, if they have coauthored a publica-
tion. The probability of an edge is derived from an expo-
nential function to the number of collaborations.

BioMine [30] (biomine.org): a snapshot of the database of
the BioMine project containing biological interactions. The
probability of any edge corresponds to the confidence that
the interaction actually exists.

Figure 5 illustrates the boxplots for the absolute discrep-
ancy distribution. For each method, the vertical line in-
cludes 96% of the vertices, the gray rectangle contains 50%
of the vertices, and the horizontal line corresponds to the
median discrepancy. For instance, in Flickr for the repre-
sentative produced by GP, 96% of the vertices have absolute
discrepancy less than 0.98, 50% of the vertices in the range
[0.23, 0.76], and the median discrepancy is 0.48. As ex-
pected, the accuracy of MP is very low; the upper bound
of the 96% range reaches discrepancy 129 for Flickr and is

omitted from Figure 5. GP performs significantly better, but
it is clearly outperformed by ADR and ABM, whose median
discrepancy is below 0.4, in all datasets.

Table 3: Average discrepancy per vertex

Flickr DBLP BioMine
MP 22.108 1.599 4.260
GP 0.560 0.407 0.678
ADR 0.278 0.352 0.346
ABM 0.280 0.315 0.453

Table 3 shows the average discrepancy per vertex for all
datasets. Note that for Flickr the average discrepancy of MP
is much higher than the median. This occurs because, as we
show in the next experiment, the highest vertex degree of
the representative is much lower than the highest expected
degree in the uncertain graph. The accuracy of GP is reason-

10
-2

10
-1

10
0

 0 50 100 150 200 250 300 350 400

cl
u
st

er
in

g
 c

o
ef

fi
ci

en
t

degree

Expected

MP

GP

ADR

ABM

(a) Flickr

10
-3

10
-2

10
-1

10
0

 0 20 40 60 80

cl
u
st

er
in

g
 c

o
ef

fi
ci

en
t

degree

Expected

MP

GP

ADR

ABM

(b) DBLP

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0 500 1000 1500 2000 2500

cl
u
st

er
in

g
 c

o
ef

fi
ci

en
t

degree

Expected

MP

GP

ADR

ABM

(c) BioMine

Figure 7: Clustering coefficient (real graphs)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 5 10 15

%
 o

f
v
er

te
x
 p

ai
rs

SP distance

Expected

MP

GP

ADR

ABM

(a) Flickr

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 5 10 15 20 25

%
 o

f
v
er

te
x
 p

ai
rs

SP distance

Expected

MP

GP

ADR

ABM

(b) DBLP

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 5 10 15

%
 o

f
v
er

te
x
 p

ai
rs

SP distance

Expected

MP

GP

ADR

ABM

(c) BioMine

Figure 8: Shortest path distance (real reduced graphs)

10
-4

10
-3

10
-2

10
-1

 0 20 40 60 80 100

n
o
rm

al
iz

ed
 b

et
w

ee
n
n
es

s

degree

Expected

MP

GP

ADR

ABM

(a) Flickr

10
-4

10
-3

10
-2

10
-1

 0 5 10 15 20 25

n
o
rm

al
iz

ed
 b

et
w

ee
n
n
es

s

degree

Expected

MP

GP

ADR

ABM

(b) DBLP

10
-4

10
-3

10
-2

10
-1

10
0

 0 5 10 15 20 25

n
o
rm

al
iz

ed
 b

et
w

ee
n
n
es

s

degree

Expected

MP

GP

ADR

ABM

(c) BioMine

Figure 9: Betweeness centrality (real reduced graphs)

able, but below that of ADR and ABM for all datasets. ADR
and ABM have similar performance for Flickr. For DBLP
(BioMine), ABM (ADR) yields better results.
Figure 6 shows the degree distribution, i.e., the percentage

of vertices in the representative instance versus the vertex
degree. The second row focuses on degrees 0 to 10, which
are the most probable. ADR and ABM are very close to the
expected distributions in all datasets. Naturally, MP is the
worst method; for instance, in Flickr the highest degree of
any vertex of its representative is below 50, although there
are vertices whose expected degree is up to 400. The inferior
performance of GP with respect to ADR and ABM is evident
in the zoomed diagrams.
Figure 7 illustrates the clustering coefficient versus the

vertex degree. In general, the ranking of the algorithms in

terms of accuracy, is the same as that for the node discrep-
ancy. The performance of MP is clearly unacceptable. GP
performs well for BioMine but it yields large error for Flickr
and DBLP. ADR and ABM achieve the best clustering co-
efficient approximations, with ADR outperforming ABM for
DBLP, which is consistent with the average discrepancy of
the algorithms in Table 3.

6.2 Reduced real graphs
In order to evaluate shortest path (SP) distance and be-

tweenness centrality, we produce subgraphs of the original
dataset using forest fire [20]. The number of vertices and
edges in the resulting subgraphs are: i) Flickr, 5000 and
655275, ii) BioMine, 5000 and 69367, and iii) DBLP, 20000
and 79619. Note that the method used to create reduced

10
-4

10
-3

10
-2

10
-1

10
0

 0 5 10 15 20 25

%
 o

f
v
er

ti
ce

s

degree

Expected
MP
GP

ADR
ABM

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 5 10 15 20 25

cl
u
st

er
in

g
 c

o
ef

fi
ci

en
t

degree

Expected
MP
GP

ADR
ABM

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 2 4 6 8 10 12

%
 o

f
v
er

te
x
 p

ai
rs

SP distance

Expected
MP
GP

ADR
ABM

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 5 10 15 20 25

b
et

w
ee

n
n
es

s

degree

Expected
MP
GP

ADR
ABM

(a) vertex degree p̄ = 0.1 (b) clustering coeff. p̄ = 0.1 (c) SP distance p̄ = 0.1 (d) betweenness p̄ = 0.1

10
-4

10
-3

10
-2

10
-1

10
0

 0 10 20 30 40 50 60 70 80

%
 o

f
v
er

ti
ce

s

degree

Expected
MP
GP

ADR
ABM

 0

 0.05

 0.1

 0.15

 0.2

 0 10 20 30 40 50 60 70 80 90

cl
u
st

er
in

g
 c

o
ef

fi
ci

en
t

degree

Expected
MP
GP

ADR
ABM

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 1 2 3 4 5 6 7 8 9

%
 o

f
v
er

te
x
 p

ai
rs

SP distance

Expected
MP
GP

ADR
ABM

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 10 20 30 40 50 60 70 80 90

b
et

w
ee

n
n
es

s

degree

Expected
MP
GP

ADR
ABM

(e) vertex degree p̄ = 0.4 (f) clustering coeff. p̄ = 0.4 (g) SP distance p̄ = 0.4 (h) betweenness p̄ = 0.4

10
-4

10
-3

10
-2

10
-1

10
0

 0 20 40 60 80 100 120

%
 o

f
v
er

ti
ce

s

degree

Expected
MP
GP

ADR
ABM

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0 20 40 60 80 100 120 140

cl
u
st

er
in

g
 c

o
ef

fi
ci

en
t

degree

Expected
MP
GP

ADR
ABM

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 1 2 3 4 5 6 7 8 9

%
 o

f
v
er

te
x
 p

ai
rs

SP distance

Expected
MP
GP

ADR
ABM

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 20 40 60 80 100 120 140 160

b
et

w
ee

n
n
es

s

degree

Expected
MP
GP

ADR
ABM

(i) vertex degree p̄ = 0.7 (j) clustering coeff. p̄ = 0.7 (k) SP distance p̄ = 0.7 (l) betweenness p̄ = 0.7

Figure 10: All metrics for different average edge probability (synthetic graphs)

graphs is orthogonal to our work; we expect the proposed
techniques to have similar performance with other size re-
duction methods.
Figure 8 illustrates the shortest path distance distribution,

i.e., the percentage of vertices versus the SP distance. Figure
9 shows the betweenness centrality versus the vertex degree.
In general, the results are consistent with those of the previ-
ous subsection. Specifically, the representatives of ADR and
ABM capture very well both metrics in all datasets. Similar
to Figure 7, GP performs well for BioMine and poorly for
Flickr. However, its accuracy for SP distance and betwee-
ness centrality in DBLP is rather good, as opposed to the
clustering coefficient for the same dataset. This indicates
that a representative may be suitable for some tasks but
not others.

6.3 Synthetic graphs
To create synthetic uncertain graphs, we first generate

a degree sequence d1, . . . , d|V | by sampling from a power-
law distribution. Then, we use the Chung-Lu model [8] to
build a graph with the specific degree sequence: for each
pair of vertices u and v, we draw the corresponding edge
(u, v) with probability proportional to du · dv. Finally, for
every edge, we assign a probability value from a normalized
Zipf distribution because it has been shown that it captures
well real-world properties [7].
We experimented with two parameters: i) the density δ

defined as the ratio between the number of edges and the

number of vertices, and ii) the average edge probability p̄.
Due to lack of space, we only show the results after fixing
density to δ = 5 and varying the average edge probability.
In all cases, the node cardinality is fixed to 10000.

Figure 10 measures the accuracy of all algorithms on all
metrics for the synthetic data. Specifically, each row corre-
sponds to an average probability value and each column to a
metric. Similar to the previous experiments, ADR and ABM
produce the best representative. The main difference is that
for the synthetic data, GP also performs well in most cases.
On the other hand, MP is acceptable only for p̄ = 0.4 be-
cause, if the edge probabilities are close to 0.5, MP is likely to
include the expected number of edges in the representative.

Comments on the run-time. The running time of the
algorithms is negligible compared to the cost of query pro-
cessing. A single core of an Intel Xeon server at 2.83GHz
cpu and 64GB ram takes about one minute to generate a
representative instance using ADR (the most expensive al-
gorithm2 on BioMine (the largest dataset with 13M edges).
ABM takes around 45 seconds, while the other algorithms
are even faster. On the other hand, just the generation of
1000 samples requires several minutes. Moreover, the evalu-
ation of the ground truth on 1000 samples is 1000 times more
expensive than the evaluation of the corresponding metric
on a representative.

2In our implementation we set the steps of ADR equal to
10 ·P

7. CONCLUSION
In this paper, we introduce the problem of extracting rep-

resentative instances of uncertain graphs. Expensive tasks
can then be processed by applying deterministic algorithms
on these instances. We propose methods that aim at cap-
turing the expected degree of individual vertices because of
its significance in the graph topology. An extensive experi-
mental evaluation with real and synthetic data confirms that
the representative instances indeed preserve well a number
of important graph metrics.
We intend to investigate the complexity class of the prob-

lem as well as approximation bounds for the representatives,
which are complicated issues beyond the scope of this work.
We will also study additional algorithms that could possibly
lead to better results. Finally, an interesting direction for
future work concerns specialized algorithms that aim at a
specific type of task, e.g., data mining, rather than general
graph metrics or properties.

Acknowledgements
Panos Parchas and Dimitris Papadias were supported by
grant HKUST 6177/13 from Hong Kong RGC.

8. REFERENCES
[1] S. Abiteboul, P. Kanellakis, and G. Grahne. On the

representation and querying of sets of possible worlds. In
SIGMOD, pages 34–48, 1987.

[2] E. Adar and C. Re. Managing uncertainty in social
networks. IEEE Data Eng. Bull., 30(2):15–22, 2007.

[3] C. C. Aggarwal and P. S. Yu. A survey of uncertain data
algorithms and applications. TKDE, 21(5):609–623, 2009.

[4] S. Asthana, O. D. King, F. D. Gibbons, and F. P. Roth.
Predicting protein complex membership using probabilistic
network reliability. Genome Res., 14:1170–1175, 2004.

[5] J. Blitzstein and P. Diaconis. A sequential importance
sampling algorithm for generating random graphs with
prescribed degrees. Internet Mathematics, 6(4):489–522,
2011.

[6] P. Boldi, F. Bonchi, A. Gionis, and T. Tassa. Injecting
uncertainty in graphs for identity obfuscation. PVLDB,
5(11):1376–1387, 2012.

[7] L. Chen and C. Wang. Continuous subgraph pattern search
over certain and uncertain graph streams. TKDE,
22(8):1093–1109, 2010.

[8] F. R. K. Chung and L. Lu. The average distance in a
random graph with given expected degrees. Internet
Mathematics, 1(1):91–113, 2003.

[9] N. Dalvi and D. Suciu. Efficient query evaluation on
probabilistic databases. In VLDB, pages 864–875, 2004.

[10] P. Erdös and T. Gallai. Graphs with prescribed degrees of
vertices (hungarian). Mat. Lapok, 11:264–274, 1960.

[11] P. Fraigniaud. Small worlds as navigable augmented
networks: model, analysis, and validation. In ESA, pages
2–11, 2007.

[12] A. M. M. Gonzalez, B. Dalsgaard, and J. M. Olesen.
Centrality measures and the importance of generalist
species in pollination networks. Ecological Complexity,
7(1):36–43, 2010.

[13] S. L. Hakimi. On realizability of a set of integers as degrees
of the vertices of a linear graph (i). J. Soc. Indust. Appl.
Math., 10(3):496–506, 1962.

[14] S. Hougardy. Linear time approximation algorithms for
degree constrained subgraph problems. In W. Cook,
L. Lovasz, and J. Vygen, editors, Research Trends in
Combinatorial Optimization, pages 185–200. Springer,
2009.

[15] R. Jin, L. Liu, and C. C. Aggarwal. Discovering highly
reliable subgraphs in uncertain graphs. In KDD, pages
992–1000, 2011.

[16] R. Jin, L. Liu, B. Ding, and H. Wang. Distance-constraint
reachability computation in uncertain graphs. PVLDB,
4(9):551–562, 2011.

[17] D. Kempe, J. M. Kleinberg, and É. Tardos. Maximizing the
spread of influence through a social network. In KDD,
pages 137–146, 2003.

[18] J. Kleinberg. Complex networks and decentralized search
algorithms. In Int. Congr. of Mathematicians (ICM), 2006.

[19] G. Kossinets and D. J. Watts. Empirical analysis of an
evolving social network. Science, 311(5757):88–90, 2006.

[20] J. Leskovec and C. Faloutsos. Sampling from large graphs.
In KDD, pages 631–636, 2006.

[21] D. Liben-Nowell and J. Kleinberg. The link prediction
problem for social networks. In CIKM, pages 556–559, 2003.

[22] P. Mahadevan, D. Krioukov, K. Fall, and A. Vahdat.
Systematic topology analysis and generation using degree
correlations. SIGCOMM Comput. Commun. Rev.,
36(4):135–146, 2006.

[23] P. Mahadevan, D. Krioukov, M. Fomenkov,
X. Dimitropoulos, k. c. claffy, and A. Vahdat. The internet
as-level topology: Three data sources and one definitive
metric. SIGCOMM Comput. Commun. Rev., 36(1):17–26,
Jan. 2006.

[24] J. Mestre. Greedy in approximation algorithms. In ESA,
pages 528–539, 2006.

[25] S. Micali and V. V. Vazirani. An O(
√

|V | · |E|) algorithm
for finding maximum matching in general graphs. In FOCS,
pages 17–27, 1980.

[26] D. Micciancio. The hardness of the closest vector problem
with preprocessing. IEEE Trans. on Information Theory,
47(3):1212–1215, 2001.

[27] M. Mihail and N. K. Vishnoi. On generating graphs with
prescribed vertex degrees for complex network modelling.
ARACNE, pages 1–11, 2002.

[28] M. E. Newman. Spread of epidemic disease on networks.
Phys. Rev. E, 66(1), 2002.

[29] M. Potamias, F. Bonchi, A. Gionis, and G. Kollios.
k-Nearest Neighbors in uncertain graphs. PVLDB,
3(1):997–1008, 2010.

[30] P. Sevon, L. Eronen, P. Hintsanen, K. Kulovesi, and
H. Toivonen. Link discovery in graphs derived from
biological databases. In DILS, pages 35–49, 2006.

[31] A. Tizghadam and A. Leon-Garcia. Betweenness centrality
and resistance distance in communication networks. IEEE
Network, 24(6):10–16, 2010.

[32] L. G. Valiant. The complexity of enumeration and
reliability problems. SIAM J. on Computing, 8(3):410–421,
1979.

[33] D. J. Watts. Collective dynamics of ‘small-world’ networks.
Nature, 393:440–442, 1998.

[34] Y. Yuan, L. Chen, and G. Wang. Efficiently answering
probability threshold-based shortest path queries over
uncertain graphs. In DASFAA, pages 155–170, 2010.

[35] Y. Yuan, G. Wang, L. Chen, and H. Wang. Efficient
subgraph similarity search on large probabilistic graph
databases. PVLDB, 5(9):800–811, 2012.

[36] Y. Yuan, G. Wang, H. Wang, and L. Chen. Efficient
subgraph search over large uncertain graphs. PVLDB,
4(11):876–886, 2011.

[37] Z. Zou, J. Li, H. Gao, and S. Zhang. Finding top-k
maximal cliques in an uncertain graph. In ICDE, pages
649–652, 2010.

[38] Z. Zou, J. Li, H. Gao, and S. Zhang. Mining frequent
subgraph patterns from uncertain graph data. TKDE,
22(9):1203–1218, 2010.

