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ABSTRACT
On photo sharing websites like Flickr and Zooomr, users
are offered the possibility to assign tags to their uploaded
pictures. Using these tags to find interesting groups of se-
mantically related pictures in the result set of a given query
is a problem with obvious applications. We analyse this
problem from a Minimum Description Length (MDL) per-
spective and develop an algorithm that finds the most in-
teresting groups. The method is based on Krimp, which
finds small sets of patterns that characterise the data using
compression. These patterns are sets of tags, often assigned
together to photos.

The better a database compresses, the more structure it
contains and thus the more homogeneous it is. Following this
observation we devise a compression-based measure. Our
experiments on Flickr data show that the most interesting
and homogeneous groups are found. We show extensive ex-
amples and compare to clusterings on the Flickr website.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Clustering;
H.2.8 [Database Applications]: Data Mining

General Terms
Algorithms, Experimentation, Theory

1. INTRODUCTION
Collaborative tagging services have become so popular

that they hardly need any introduction. Flickr, del.icio.us,
Technorati, Last.fm, or citeulike – just to mention a few –
provide their users with a repository of resources (photos,
videos, songs, blogs, urls, scientific papers, etc.), and the ca-
pability of assigning tags to these resources. Tags are freely
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chosen keywords and they are a simple yet powerful tool for
organising, searching and exploring the resources.

Suppose you’re fond of high dynamic range (HDR for
short, a digital photo technique) and you want to see what
other photographers are doing in HDR. You type the query
hdr in Flickr and you get a list of more than one million
pictures (all pictures tagged with hdr). This is not a very
useful representation of the query result, neither for explor-
ing nor for discovery. In a situation like this, it is very useful
to have the resulting pictures automatically grouped on the
basis of their other tags. For instance, the system might
return groups about natural elements, such as {sea, beach,
sunset} and {cloud, winter, snow}, a group about urban
landscape {city, building}, or it may localise the pictures
geographically, e.g. by means of the groups {rome, italy}
and {california, unitedstates}. Grouping allows for a much
better explorative experience.

Presenting the results of a query by means of groups may
also help discovery. Suppose you search for pyramid. In-
stead of a unique long list of pictures, you might obtain the
groups: {chichenitza, mexico}, {giza, cairo}, {luxor, lasve-
gas}, {france, museum, louvre, glass}, {rome, italy}, {glas-
tonbury, festival, stage}, and {alberta, edmonton, canada}.
Thus you discover that there are pyramids in Rome, Edmon-
ton, and that there is a pyramid stage at the Glastonbury
festival. You would have not discovered this without group-
ings, as the first photo of Rome’s pyramid might appear very
low in the result list.

Grouping also helps to deal with ambiguity. E.g. you
type jaguar and the system returns to you groups about the
animal, the car, the guitar, and the airplane.

In a nutshell, the problem at hand is the following: given
the set of photos belonging to a particular tag, find the most
interesting groups of photos based only on their other tags.
Since we focus only on tags, we may consider every photo
simply as a set of tags, or a tagset.

But, what makes a group of photos, i.e. a bag of tagsets,
“interesting”? The examples just described suggest the fol-
lowing answer: large groups of photos that have many tags
in common. Another word for having many tags in com-
mon is homogeneous, which results in the following informal
problem statement:

For a database DQ of photos containing the
given query Q in their tagsets, find all signifi-
cantly large and homogeneous groups G ⊆ DQ.



Actually, Flickr has already implemented Flickr clusters1,
a tag clustering mechanism which returns 5 groups or less.
The method proposed in this paper is rather different: (1)
it finds groups of photos, i.e. groups of tagsets, instead of
groups of tags, (2) it is based on the idea of tagset compres-
sion, and (3) it aims at producing a much more fine grained
grouping, also allowing the user to fine-tune the grain.

Difficulties of the problem. All collaborative tagging
services, even if dealing with completely different kinds of
resources, share the same setting: there is a large database
of user-created resources linked to a tremendous amount of
user-chosen tags. The fact that tags are freely chosen by
users means that irrelevant and meaningless tags are present,
many synonyms and different languages are used, and so on.
Moreover, different users have different intents and different
tagging behaviours [1]: there are users that tag their pictures
with the aim of classifying them for easy retrieval (maybe
using very personal tags), while other users tag for making
their pictures visited by as many other users as possible.
There are users that assign the same large set of tags to
all the pictures of a holiday, even if they visited different
places during the holiday; thus creating very strong, but
fake, correlations between tags. This all complicates using
tags for any data mining/information retrieval task.

Another difficulty relates to the dimensions of the data.
Even when querying for a single tag, both the number of dif-
ferent pictures and the number of tags can be prohibitively
large. However, as pictures generally only have up to tens
of tags, the picture/tag matrix is sparse. This combination
makes it difficult to apply many of the common data mining
methods. For instance, clustering methods like k-means [8]
attempt to cluster all data. Because the data matrices are
large and sparse, this won’t give satisfactory results. Clus-
tering all data is not the way to go: many pictures simply
don’t belong to a particular cluster or there is not enough
information available to assign it to the right cluster.

Our approach and contribution. We take a very differ-
ent approach to the problem by using MDL, the Minimum
Description Length principle [4]. The general idea of MDL
is that given the data and a set of models, the best model
is that one that minimises the size of both the compressed
data and the model. In the current context, this means that
we are looking for groups of pictures that can be compressed
well. We will make this more formal in the next section.

We consider search queries Q consisting of a conjunction
of tags and we denote by DQ the database containing the
results of a search query. Each picture in DQ is simply
represented by the set of tags it contains. Our goal is to
find all large and coherent groups of pictures in DQ. We
do not require all pictures and/or tags to be assigned to a
group.

For this, we build upon the Krimp [11] algorithm, which
uses MDL to characterise data with small sets of patterns.
Krimp has previously been shown to capture data distribu-
tions very well [14].

The algorithm presented in this paper uses Krimp to com-
press the entire dataset to obtain a small set of descriptive
patterns. These patterns act as candidates in an agglomer-
ative grouping scheme. A pattern is added to a group if it
contributes to a better compression of the group. This re-
sults in a set of groups, from which the group that gives the

1see www.flickr.com/photos/tags/jaguar/clusters/

largest gain in compression is chosen. This group is taken
from the database and the algorithm is re-run on the re-
mainder until no more groups are found. The algorithm will
be given in more detail in Section 3.

We collect data from Flickr for our experiments. To ad-
dress the problems specific for this type of data (mentioned
above), we apply some pre-processing. Among this is a tech-
nique based on Wikipedia redirects (see Section 4).

Experiments are performed on a large number of queries.
To demonstrate the high quality of the results, we show
extensive examples of the groups found. For a quantitative
evaluation, we introduce a compression-based score which
measures how good a database can be compressed. Using
this score, we compare our method to the groups that can be
found by Flickr clusters. The results shows that our method
finds groups of tagsets that can be compressed better than
the clusters on Flickr. Even more important, pictures not
grouped by our method cannot be compressed at all, while
pictures not grouped in the current Flickr implementation
can be compressed and thus contain structure.

2. THE PROBLEM

2.1 Preliminaries: MDL for Tagsets
Given are a query Q and some mechanism that retrieves

the corresponding set of pictures DQ. We represent this
set of pictures as a bag of tagsets (each picture represented
by its associated tagset). The situation is identical to that
of frequent itemset mining [5], where a bag of sets is given
(usually dubbed transactions), and the patterns of interest
are again sets of items (usually dubbed itemsets). Since in
this case they consist of tags we call them tagsets.

We denote our input database by D, and let T represent
the vocabulary of all tags appearing in D. A transaction
t ∈ D (i.e. a picture) is a subset t ⊆ T , a group G is a
subset of transactions in D, i.e. G ⊆ D. |D| denotes the
number of transactions in D. A tagset X is a set of tags,
i.e. X ⊆ T , X occurs in a transaction t iff X ⊆ t, and the
length of X is the number of tags it contains. The support
of a tagset X in database D, denoted by supD(X), is the
number of transactions in D in which X occurs. That is,
supD(X) = |{t ∈ D | X ⊆ t}|.

For a given minimal support threshold minsup, a tagset
X is called frequent if its support exceeds minsup on D,
i.e. supD(X) ≥ minsup. Due to the A Priori property,
X ⊆ Y → supD(X) ≥ supD(Y ), all frequent tagsets can be
discovered efficiently [5].

MDL (Minimum Description Length) [4] is a practical ver-
sion of Kolmogorov Complexity. Both embrace the slogan
Induction by Compression. For MDL, this principle can be
roughly described as follows.

Given a set of models H, the best model H ∈ H is the one
that minimises

L(H) + L(D|H)

in which

• L(H) is the length, in bits, of the description of H,
and

• L(D|H) is the length, in bits, of the description of the
data when encoded with H.

In order to use this principle for our problem statement,
we need to define our collection of models and how to encode



Algorithm 1 The Cover Algorithm

1: Cover(CT, t) :
2: Y := smallest X ∈ CT in coding order for which X ⊆ t
3: if t \ Y = ∅ then
4: Result = {Y }
5: else
6: Result = {Y } ∪Cover(CT, t \ Y )
7: end if
8: return Result

the data with such a model. Moreover, we need to determine
how many bits are necessary to encode a model and how
many are necessary for the coded data.

The remainder of this subsection is mostly taken from [11]
and provided here for the convenience of the reader. We use
(sets of) code tables as our models. Such a code table is
defined as follows.

Definition 1. Let T be a set of tags and C a set of code
words. A code table CT for T and C is a two column table
such that:

1. The first column contains tagsets over T , contains at
least all singleton tagsets, and is ordered descending on
1) tagset length, 2) support and 3) lexicographically.

2. The second column contains elements from C, such that
each element of C occurs at most once.

A tagset X ∈ P(T ) occurs in CT , denoted by X ∈ CT iff
X occurs in the first column of CT , similarly for a code
C ∈ C. For X ∈ CT , codeCT (X) denotes its code, i.e. the
corresponding element in the second column. |CT | denotes
the number of tagsets X in CT .

To encode a transaction database D over T with code
table CT , we use the Cover algorithm from [11] given in
Algorithm 1. Its parameters are a code table CT and a
transaction t, the result is a set of elements of CT that
cover t. Note that Cover is a well-defined function on any
code table and any transaction t, since CT contains at least
the singletons.

To encode database D, we simply replace each transaction
by the codes of the tagsets in its cover: t→ {codeCT (X) |X ∈
Cover(CT, t)}. Note, to ensure that we can decode an en-
coded database uniquely, we assume that C is a prefix code.

Since MDL is concerned with the best compression, the
codes in CT should be chosen such that the most often used
code has the shortest length. That is, we should use an
optimal prefix code, i.e. the Shannon code. To define this
for our code tables, we need to know how often a certain
code is used. We call this the usage of a tagset in CT .
Normalised, this usage represents the probability that that
code is used in the encoding of an arbitrary t ∈ D,

P (X|D) =
usageD(X)∑

Y ∈CT usageD(Y )

The optimal code length is then − log of this probability and
the coding table is optimal if all its codes have their optimal
length. That is, a code is optimal for D iff |codeCT (X)| =
− log(P (X|D)) and CT is code-optimal for D if all its codes
C ∈ CT are optimal for D. From now on, we assume that
code tables are code-optimal, unless we state differently.

For any database D and code table CT , we can now com-
pute L(D|CT ). The encoded size of a transaction is simply
the sum of the sizes of the codes of the tagsets in its cover,
l(t|CT ) =

∑
X∈Cover(CT,t)− log(P (X|D)). The size of a D,

denoted by L(D|CT ), is simply the sum of the sizes of its
transactions, L(D|CT ) =

∑
t∈D l(t|CT ).

In the remainder of the paper, we sometimes slightly abuse
notation by denoting L(D|CT ) with shortcut CT (D).

The remaining problem is to determine the size of a code
table. For the second column this is clear as we know the size
of each of the codes. For encoding the first column, we use
the simplest code table, i.e, the code table that contains only
the singleton elements. This code table, with optimal code
lengths for database D, is called the standard code table for
D, denoted by ST . With this choice the size of CT , denoted
by LD(CT ), is given by LD(CT ) =

∑
X∈CT |codeST (X)| +

|codeCT (X)|.
With these results we know the total size of our encoded

database. It is simply the sum of the size of the encoded
database plus the size of the code table. The total size of
the encoded database, denoted by L(D, CT ), is given by
L(D, CT ) = L(D|CT ) + LD(CT ).

Clearly, two different code tables will yield different en-
coded sizes. The lower the total encoded size, the better
the code table captures the structure of the database. An
optimal code table is one that minimises the total size.

Definition 2. Let D be a database over T and let CT be
the set of code tables that are code-optimal for D. Code table
CT ∈ CT is called optimal iff

CT = argmin
CT∈CT

L(D, CT )

If we compare the encoded size reached by an optimal code
table CT with the encoded size reached by the standard code
table ST , we get insight into how much structure has been
found. Or, how much structure is present in the database.

Definition 3. Let D be a database over T and CT its
optimal code table, we define compressibility of D as

compressibility(D) = 1− L(D, CT )

L(D, ST )

The higher compressibility, the more structure we have in
the database. If compressibility is 0, there is no structure
discernible by a code table.

2.2 Problem Statement
Recall that our goal is to find all significantly large and

homogeneous groups in the data. Both significantly large
and homogeneous are vague terms, but luckily both can be
made more precise in terms of compression. Homogeneous
means that the group is characterised by a, relatively, small
set of tags. That is, a group is homogeneous if it can be
compressed well relative to the rest of the database. Hence,
we should compare the performance of an overall optimal
code table with a code table that is optimal on the group
only. For this, we define compression gain:

Definition 4. Let D be a database over T , G ⊆ D a
group and CTD and CTG their respective optimal code ta-
bles. We define compression gain of group G, denoted by
gain(G,CTD), as

gain(G,CTD) = CTD(G)− CTG(G)



If the gain in compression for a particular group is large,
this means that it can be compressed much better on its own
than as part of the database. Note that compression gain is
not strictly positive: negative gains indicate that a group is
compressed better as part of the database. This could, e.g.
be expected for a random subset of the data.

Compression gain is influenced by two factors: (1) homo-
geneity of the group and (2) size of the group. The first we
already discussed above. For the second, note that if two
groups G1 and G2 have the same optimal code table CT
and G1 is a superset of G2, then L(G1, CT ) will necessarily
be bigger than L(G2, CT ). Hence, bigger groups have po-
tentially a larger compression gain. Since we look for large,
homogeneous groups, we can now define the best group.

Problem 1 (Maximum Compression Gain Group).
Given a database D over a set of tags T and its optimal code
table CT , find that group G ⊆ D that maximises gain(G,CT ).

We do not want to find only one group, but the set of
all large homogeneous groups. Denote this set by G =
{G1, . . . , Gn}. G contains all large homogeneous groups if
the remainder of the database contains no more such groups.
That is, if the remainder of the database has compressibility
0. Since we want our groups to be homogeneous, we require
that the Gi are disjoint. We call a set of groups that has
both these properties a grouping, the formal definition is as
follows.

Definition 5. Let D be a database over T and G =
{G1, . . . , Gn} a set of groups in D. G is a grouping of D iff

1. compressibility
(
D \

(⋃
Gi∈G Gi

))
= 0

2. i 6= j → Gi ∩Gj = ∅

The grouping we are interested in is the one that maximises
the total compression gain.

Problem 2 (Interesting Tag Grouping). Given a
database D over a set of tags T and its optimal code table
CT , find a grouping G of D such that

∑
Gi∈G gain(Gi, CT )

is maximal.

3. THE ALGORITHM
In this section, we propose a new algorithm for the Inter-

esting Tag Grouping problem. Our method is built upon a
heuristic algorithm called Krimp that approximates the op-
timal code table for a database [11]. For this, Krimp needs
a database and a set of candidate tagsets as input. As can-
didates, frequent tagsets up to a given minsup are used. The
candidate set is ordered first descending on support, second
descending on tagset cardinality and third lexicographically.
Krimp starts with the standard code table ST. One by one,
each pattern in the candidate set is added to the code table
to see if it helps to improve database compression. If it does,
it is kept in the code table, otherwise it is removed. After
this decision, the next candidate is tested. In all experiments
reported in this paper, pruning is applied, meaning that each
time a tagset is kept in the code table all other elements are
tested to see whether they still contribute to compression.
Elements that do not are permanently removed.

3.1 Code Table-based Groups
For the Maximum Compression Gain Group problem, we

need to find the group G ⊆ D that maximises gain(G,CT ).
Unfortunately, gain(G,CT ) is neither a monotone nor an
anti-monotone function. If we add a small set to G, the gain
can both grow (a few well-chosen elements) or shrink (using

random, dissimilar elements). Given thatD has 2|D| subsets,
this means that computing the group that gives the maximal
compression gain is infeasible. A similar observation holds
for the Interesting Tag Grouping problem.

Hence, we have to resort to heuristics. Given that the
tagsets in the code table CT characterise the database well,
it is reasonable to assume that these tagsets will also charac-
terise the maximum compression gain group well. In other
words, we only consider groups that are characterised by a
set of code table elements.

Each code table element X ∈ CT is associated with a bag
of tagsets, viz., those tagsets which are encoded using X. If
we denote this bag by G(X,D), we have

G(X,D) = {t ∈ D |X ∈ Cover(CT, t)}

For a set g of code table elements we simply take the union
of the individual bags, i.e.

G(g,D) =
⋃

X∈g

G(X,D)

Although a code table generally doesn’t have more than hun-
dreds of tagsets, considering all 2|CT | such groups as candi-
dates is still infeasible. In other words, we need further
heuristics.

3.2 Growing Homogeneous Groups
Let D1 and D2 be two databases over the same set of tags
T , with code tables CT1 and CT2, respectively. Moreover,
let CT1 ≈ CT2, i.e. they are based on more or less the same
tagsets and the code lengths of these tagsets are also more
or less the same. Then it is highly likely that the code table
CT∪ of D1 ∪ D2 will also be similar to CT1 and CT2. In
other words, it is highly likely that

L(D1 ∪ D2, CT∪) < L(D1, CT1) + L(D2, CT2)

This insight suggests a heuristic: we grow homogeneous
groups. That is, we add code table elements one by one
to the group, as long as the group stays homogeneous.

This strategy pre-supposes an order on the code table el-
ements: which code table element do we try to add first?
Given that the final result will depend on this order, we
should try the best candidate first. In the light of our obser-
vation above, the more this new tagset has in common with
the current set of code table elements the better a candidate
it is. To make this precise, we define the notion of coherence.

Definition 6. Let D be a database over the tagset T and
let CT be its code table. Moreover, let X ∈ CT and g ⊂ CT .
Finally, let U(g) =

⋃
Y ∈g Y . Then the coherence of X with

g is defined by

coherence(X, g,D) =
∑

i∈(X∩U(g))

usageG(g,D)({i})

Given a set of candidate tagsets Cand, the best candidate
to try first is the one with the highest coherence with the
current group, i.e.

bestCand(g,D, Cand) = argmax
X∈Cand

coherence(X, g,D)



Algorithm 2 The GrowGroup Algorithm

1: GrowGroup(g,D, CT, gMinsup) :
2: Cand := CT
3: while Cand 6= ∅ do
4: best := bestCand(g,D, Cand)
5: Cand := Cand \ best
6: if AcceptCandidate(best, g,D, CT, gMinsup) then
7: g := g ∪ {best}
8: end if
9: end while

10: return g

1: AcceptCandidate(best, g,D, CT, gMinsup) :
2: G := G(g,D)
3: G′ := G(g ∪ {best},D)
4: δ := G′ \G
5: CTG := Krimp(G, MineCandidates(G, gMinsup))
6: CTG′ := Krimp(G′, MineCandidates(G′, gMinsup))
7: return CTG′(G′) < CTG(G) + CT (δ)

Next to this order, we need a criterion to decide whether
or not to accept the candidate. This is, again, based on
compression.

Definition 7. Let g be the set of tagsets that define the
current group G = G(g,D). Consider candidate X, with
candidate cluster G′ = G(g ∪ {X},D) and δ = G′ \ G. Let
CTD, CTG and CTG′ be the optimal code tables for respec-
tively D, G and G′. We now accept candidate X iff

CTG′(G′) < CTG(G) + CTD(δ)

When a candidate helps to improve compression of all data
in the new group, we decide to keep it. Otherwise, we reject
it and continue with the next candidate. The algorithm that
does this is given in Algorithm 2.

3.3 Finding Interesting Tag Groups
The group growing algorithm given in the previous sub-

section only gives us the best candidate given a non-empty
group. In line with its hill-climbing nature, we consider each
code table element X ∈ CT as starting point. That is, we
grow a group from each code table element and choose the
one with the maximal compression gain as our Maximum
Compression Gain Group. Note that this implies that we
only need to consider |CT | possible groups.

To solve the Interesting Tag Grouping problem we use our
solution for the Maximum Compression Gain Group prob-
lem iteratively. That is, we first find the Maximum Com-
pression Gain Group G on D, then repeat this on D \ G,
and so on until no group with gain larger than 0 can be
found. This simple recursive scheme is used by the Find-
TagGroups algorithm presented in Algorithm 3.

The algorithm has four parameters, with database D obvi-
ously being the most important one. The second parameter
is the minimum number of code table elements a group has
to consist of to get accepted. Krimp requires a minimum
support threshold to determine which frequent tagsets are
used as candidates and we specify these separately for the
database (dbMinsup) and the groups (gMinsup). We will
give details on parameter settings in Section 5.

The result of the FindTagGroups algorithm is a set of
pairs, each pair representing a group of the grouping. Each
pair contains (1) the code table elements that were used to

Algorithm 3 The FindTagGroups Algorithm

1: FindTagGroups(D,minElems, dbMinsup, gMinsup) :
2: groups := ∅
3: loop
4: CT := Krimp(D, MineCandidates(D, dbMinsup))
5: bestGain := 0
6: best := ∅
7: for all X ∈ CT do
8: cand := GrowGroup({X},D, CT, gMinsup)
9: if gain(G(cand,D), CT ) > bestGain and

|cand| >= minElems then
10: bestGain := gain(G(cand,D), CT )
11: best := cand
12: end if
13: end for
14: if best 6= ∅ then
15: groups := groups ∪ {(best,G(best,D))}
16: D := D \G(best,D)
17: else
18: break
19: end if
20: end loop
21: return groups

construct the group and (2) the transactions belonging to
the group. The former can be used to give a group descrip-
tion that can be easily interpreted, as these are the tagsets
that characterise the group. E.g. a group description could
be the k most frequent tags or a ‘tag cloud’ with all tags.

4. DATA PRE-PROCESSING
Our data collection consists of tagsets from Flickr photos.

We evaluate the performance of the algorithm on a diverse
set of datasets. Each dataset consists of all photos for a cer-
tain query, i.e. all photos that have a certain tag assigned.
Table 1 shows a list of the queries used to evaluate the algo-
rithm. We use a wide range of different topic types, ranging
from locations to photography terms, with general and spe-
cific, as well as ambiguous and non-ambiguous queries.

To reduce data sparsity we limit our attention to a subset
of the Flickr tag vocabulary, consisting of roughly a million
tags used by the largest number of Flickr users. Effectively
this excludes only tags that are used by very few users.

Another source of data sparsity is that Flickr users use
different tags to refer to the same thing. The source of
this sparsity can have several roots: (1) singular or plu-
ral forms of a concept (e.g. scyscraper, skyscrapers); (2)
alternative names of entities (e.g. New York City, NYC,
New York NY); (3) multilingual references to the same en-
tity (e.g. Italy, Italia, Italie); or (4) common misspellings of
an entity (e.g. Effel Tower, Eifel Tower). We address this
problem using Wikipedia redirects. If a user tries to access
the ‘NYC’ Wikipedia page she is redirected to the ‘New York
City’ Wikipedia page. We downloaded the list of redirects
used by Wikipedia and mapped them to Flickr tags using
exact string matching. This results in a set of rewrite rules
we used to normalise the Flickr tags. E.g. all occurrences of
the tag ‘nyc’ were replaced by the tag ‘new york city’.

Figure 1 shows some examples of the rewrite rules that
were gathered using Wikipedia redirects. The figure shows
all strings that were transformed to the given normalised



new york city city new york, new york, city of new york,
new york skyline, nyc, new yawk, ny city, the city that
never sleeps, new york new york

eiffel tower eiffle tower, iffel tower, effel tower, tour eiffel,
eifel tower, eiffel tour, the eiffel tower, la tour eiffel,
altitude 95

skyscraper skyscrapers, office tower, tall buildings,
skyskraper, skycrappers

Figure 1: Examples of tag transformations using
Wikipedia redirects.

string (bold). We can see that using the redirects we address,
to some extent, the problem of singular/plural notation, al-
ternative names, multilinguality and common misspellings.

A very common ‘problem’ in Flickr data is that users
assign a large set of tags to entire series of photos. For
example, when someone has been on holiday to Paris, all
photos get the tags europe, paris, france, eiffeltower, seine,
notredame, arcdetriomphe, montmartre, and so on. These
tagsets are misleading and would negatively influence the
results. As a workaround, we make all transactions in a
dataset unique; after all, we cannot distinguish photos using
only tag information if they have exactly the same tags.

Another issue pointed out by this example is that some
items are not informative: e.g. if we query for eiffeltower,
many of the transactions contain the tags europe, paris and
france. If one were to find a large group, including these
high-frequent tags would clutter the results. Therefore, we
remove all items with frequency ≥ 15% from each dataset.
One final pre-processing step is to remove all tags containing
either a year in the range 1900-2009 or any camera brand,
as both kinds of tags introduce a lot of noise.

5. EXPERIMENTS

5.1 Experimental Setup
To assess the quality of the groups produced by the Find-

TagGroups algorithm, a large number of experiments was
performed on the datasets for which basic properties are
given in Table 1. The experiments reported on in this sec-
tion all use the same parameter settings:

dbMinsup = 0.33% This is the minsup parameter used
by Krimp to determine the set of candidate frequent tagsets
(see Algorithm 3). This parameter should be low enough
to enable Krimp to capture the structure in the data, but
not too low as this would allow very infrequent tagsets to
influence the results. For this application, we empirically
found a minsup of 0.33% to always give good results.

gMinsup = 20% This parameter is used when running
Krimp on a group (see Algorithm 2 and 3). As groups are
generally much smaller than the entire database, this param-
eter can be set higher than dbMinsup. We found a setting
of 20% to give good results.

minElems = 2 This parameter determines the minimum
number of code table elements required for a group. In
practice, it acts as a trade-off between fewer groups that
are more conservative (low value) and more groups that are
more explorative (high value). Unless mentioned otherwise,
this parameter is fixed to 2.

0 2 4 6 8 10
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

# groups

C
o

m
p

re
ss

ib
ili

ty

Figure 2: Database compressibility for Bicycle when
applying FindTagGroups (minElems = 2).

5.2 An Example Query
To demonstrate how the algorithm works and performs,

let us first consider a single dataset: Bicycle. As we can
see from Table 1, it contains 98,304 photos with a total of
10,126 different tags assigned, 6.1 per photo on average.

When FindTagGroups is applied on this dataset, it first
constructs a code table using Krimp. Then, a candidate
group is built for each tagset in the code table (using the
GrowGroup algorithm). One such tagset is {race, tourof-
california} and the algorithm successfully adds coherent tags
to form a group: first the tagset {race, racing, tourofcalifor-
nia, atoc, toc}, then {race, racing, tourofcalifornia, atoc},
{race, racing, tourofcalifornia, stage3}, and so on until 22
code table elements have been selected to form a group.

Compression gain is computed for each of the candidate
groups constructed and the group with the maximal gain
is chosen. In this case, the group with most frequent tags
{race, racing, tourofcalifornia, atoc, cycling} has the largest
gain (57,939bits) and is selected. All 3,564 transactions be-
longing to this group are removed from the database, a new
code table is built on the remainder of the database and the
process repeats itself.

As explained in Subsection 2.1, we can use compressibility
to measure how much structure is present in a database. If
we do this for the group we just found, we get a value of 0.05,
so there is some structure but not too much. However, it is
more interesting to see whether there is any structure in the
remainder of the database. Compressibility of the original
database was 0.029, after removing the group it is 0.024,
so we removed some structure. Figure 2 shows database
compressibility computed each time after a group has been
removed. This shows that we remove structure each time
we form a group and that there is hardly any structure left
when the algorithm ends: compressibility after finding 10
groups is 0.008.

So far we assumed the minElems parameter to have its de-
fault value 2. However, Figure 3 shows the resulting group-
ings for different settings of minElems. Each numbered item
represents a group and the groups are given in the order in
which they are found. For each group, the union of the code
table elements defining the group is taken and the tags are
ordered descending on frequency to obtain a group descrip-
tion. For compact representation, only the 5 most frequent



minElems=1
1. race racing tourofcalifornia atoc cycling

2. bicicleta bici fahrrad cycling

3. freestyle bmx
4. netherlands amsterdam holland nederland fiets

5. fixedgear fixie fixed gear trackbicycle

6. travel trip
7. street tokyo bw japan people
8. cycling cycle mountainbike mtb london

9. newyorkcity city urban china beijing

10. portland oregon bikeportland

11. p12 pro racing race
12. canada bc toronto

13. black white
14. blue sky red cloud

15. sanfrancisco california sf

16. unitedkingdom england
17. winter snow
18. paris france
19. shanghai china
20. child kid

minElems=2
1. race racing tourofcalifornia atoc cycling

2. bicicleta bici fahrrad cycling

3. netherlands amsterdam holland nederland fiets

4. bmx freestyle oldschool

5. fixedgear fixie fixed gear trackbicycle

6. tokyo china japan street people

7. cycling cycle mountainbike mtb london

8. newyorkcity city urban manhattan street

9. portland oregon bikeportland

10. sky blue cloud red

minElems=6
1. race racing tourofcalifornia atoc cycling

2. netherlands amsterdam holland fahrrad nederland

3. street tokyo bw japan people
4. cycling city urban cycle street

5. fixedgear fixie fixed gear track

minElems=12
1. race racing tourofcalifornia atoc cycling

2. netherlands amsterdam holland fahrrad nederland

3. street city urban people bw

Figure 3: Groups for Bicycle (different settings for
minElems, showing the 5 most frequent tags per
group).

tags are given (or less if the group description is smaller).
Font size represents frequency relative to the most frequent
tag in that particular group description.

Clearly, most groups are found when minElems = 1. Groups
with different topics can be distinguished: sports activities
(1, 3, 8, 11), locations (4, 7, 9, 10, 12, 15, 16, 18, 19), ‘gen-
eral circumstances’ (6, 14, 17). The second group is due to a
linguistic problem which is not solved by the pre-processing.

Increasing minElems results in a reduction in the number
of groups. This does not mean that only the top-k groups
from the minElems = 1 result set are picked. Instead, a
subset of that result set is selected and sometimes even new
groups are found (e.g. minElems = 12 group 3). Unsurpris-
ingly, increasing the minElems value results in fewer groups
with larger group descriptions. These are often also larger

in the number of transactions and can generally be regarded
more confident but less surprising. For the examples in Fig-
ure 3, for minElems = 1 a group on average contains 1,181
transactions, 1,828 transactions for minElems = 2, 3,034
transactions for minElems = 6 and 3,325 transactions for
minElems = 12.

We found minElems = 2 to give a good balance in the
number of groups, the size of the groups and how conser-
vative/surprising these are. We therefore use this as the
default parameter setting in the rest of the section.

5.3 More Datasets
Table 1 shows quantitative results for all datasets. From

this table, we see that the algorithm generally finds 10-20
groups, but sometimes more, with fun as extreme with 50
groups. This can be explained by the fact that ‘fun’ is a very
general concept, so it is composed of many very different
conceptual groups and these are all identified. On average,
between 5 and 8 code table elements are used for a group.
The average number of transactions (photos) that belong
to a group depends quite a lot on the dataset. Average
group sizes range from only 73 for fun up to 17,899 for art.
However, the size relative to the original database does not
vary much, from 1.3% up to 2.7%. The complete groupings
usually give a total coverage between 20 and 40%.

The three rightmost columns show compressibility values:
for the groups found (averaged), for the database remaining
after the algorithm is finished and for the initial database
(called base). The compressibility of the initial database
can be regarded as a baseline, as it is an indication of how
much structure is present. In general, there is not that much
structure present in the sparse tag data so values are not far
above 0. However, the groups identified have more structure
than baseline: for all datasets, average group compressibil-
ity is higher than baseline. Even more important is that
compressibility of the database remaining after removing all
groups is always very close to 0 (<= 0.01). Hence, all struc-
ture that was in the database has been captured.

To give some more insight in the groups found by the al-
gorithm, Figure 4 shows additional results for 4 datasets. In
general, the resulting groups clearly identify specific photo
collections that are conceptually different. Sometimes there
appears to be some redundancy (from a semantic point of
view), but in most cases additional tags reveal subtle dif-
ferences. Note that not all tags that are part of the group
descriptions are shown (see Subsection 5.2).

Some groups are surprising. For example, the second
group for black and white, with dewolf as most frequent tag.
At first sight, it looks like a single user got chosen as second-
most important concept for this query. However, performing
a Flickr search for blackandwhite and dewolf quickly learns
us that there is a Nick DeWolf photo archive project and this
archive contains over 13,000 black&white pictures taken by
this co-founder of Teradyne in Boston. After all, it is thus
by no means strange that this comes up as second group.

5.4 Compared to Flickr
As mentioned in the introduction, Flickr offers its visitors

the possibility to browse through ‘clusters’ of photos given a
certain tag. However, Flickr clusters are conceptually differ-
ent from our groupings: (1) Flickr clusters consist of tags,
not pictures, (2) Flickr only gives 1 to 5 clusters and (3)
clusters are usually quite general and conservative (hardly



Dataset Group average Compressibility

Query |T | |db| #tags/photo #groups #elems #transactions group avg remainder base

Architecture 13657 541810 8.0 22 5.5 8507 (1.6%) 0.064 0.006 0.047
Art 15498 861711 8.5 15 7.9 17899 (2.1%) 0.034 0.002 0.032
Bicycle 10126 98304 6.1 10 7.1 1828 (1.9%) 0.061 0.008 0.029
Black and white 14042 567554 7.4 17 6.5 10815 (1.9%) 0.056 0.004 0.037
Eiffeltower 3994 13087 4.8 12 6.7 309 (2.4%) 0.072 0.001 0.039
Florence 5299 42528 5.3 18 6.9 731 (1.7%) 0.078 0.007 0.048
Fun 9162 5533 14.2 50 6.3 73 (1.3%) 0.213 0.009 0.137
HDR 12788 210389 7.3 14 5.4 3608 (1.7%) 0.043 0.005 0.032
Hollywood 9090 51176 7.7 24 8.1 731 (1.4%) 0.112 0.004 0.081
Jaguar 9283 10996 7.0 11 9.3 251 (2.3%) 0.132 0.012 0.067
Manhattan 9328 167087 6.8 19 8.6 3125 (1.9%) 0.081 0.005 0.063
Niagara falls 3144 11307 4.8 18 5.8 227 (2.0%) 0.117 0.006 0.048
Night 13366 790277 7.4 19 5.0 13011 (1.6%) 0.043 0.004 0.034
Portrait 12982 846530 7.6 19 6.2 15477 (1.8%) 0.047 0.002 0.037
Pyramid 7288 15657 6.9 20 11.2 369 (2.4%) 0.115 0.004 0.066
Reflection 13157 437769 7.5 17 6.3 8660 (2.0%) 0.036 0.005 0.033
Rock 16305 249790 8.0 13 15.9 6635 (2.7%) 0.092 0.005 0.044
Skyscraper 9298 42292 8.5 38 8.8 731 (1.7%) 0.059 0.009 0.083
Spain 9376 324682 6.9 19 6.3 5670 (1.7%) 0.079 0.008 0.054
Windmill 8474 23838 5.9 13 7.6 574 (2.4%) 0.066 0.003 0.036

Table 1: Dataset properties and quantitative results obtained with the FindTagGroups algorithm. For each
dataset, the number of groups found, the average number of code table elements and transactions per group
are given. Compressibility is shown for all groups (averaged), the database remaining after the algorithm is
finished and the initial database.

surprising). An objective semantic comparison of the groups
we find to the Flickr clusters is therefore impossible; it would
come down to subjective preference of the person asked.

To give an example, Flickr gives the following clusters for
bicycle (www.flickr.com/photos/tags/bicycle/clusters/):

1. bike street bw cycling city urban cycle red road bikes

2. amsterdam netherlands holland
3. fixie fixed fixedgear gear

4. england uk

It is up to personal taste whether you prefer this or the
groupings we presented in Figure 3. What we can do though,
is to ‘simulate’ Flickr clusters with the data we have and
compute compressibility values for both the clusters and the
unclustered photos. To this end, we first retrieve the tagsets
that identify the clusters from the Flickr website and pre-
process these the same way we pre-processed our data. Next,
take the pre-processed datasets also used for the previous ex-
periments and assign each transaction to one of the clusters
or to the database with ‘remaining’ photos. Each cluster is
constructed as follows: each photo is assigned to the tagset
with which it has the largest tag intersection. (In case of a
tie, the transaction is assigned to the first tagset with the
largest intersection, clusters ordered as on the website.) Any
transactions that do not intersect with any of the cluster’s
tagsets are assigned to the remainder database.

For all queries used in this paper, Flickr presents 3.5 clus-
ters on average. Average compressibility for all Flickr clus-
ters we obtained is 0.014. This means that there is hardly
any structure in the clusters that can be captured in a code
table by Krimp, much less than the groups the FindTag-
Groups algorithm finds.

More important are the compressibility values computed
for the database containing all photos not belonging to any

cluster: is there any structure left? The average value we ob-
tained for all datasets is 0.035, clearly indicating that there
is structure not yet captured in one of the clusters. Figure 5
shows a comparison of remaining database compressibility
between the Flickr method and our method. It is easy to
see that our method is better at finding all structure in the
database than Flickr’s method is.

5.5 Running Times
All experiments have been performed on a machine with

a 3GHz Intel Xeon CPU and 2Gb of memory. Running
times depend on a large number of factors, amongst which
the number of tags |T | and transactions |D|. The amount
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Figure 5: Remaining database compressibility com-
pared to Flickr, for 5 datasets.



Black and white
1. black art girl kid

2. dewolf blackwhite nick boston

3. bn biancoenero blancoynegro italy portrait

4. woman girl portrait female face

5. film 35mmfilm format ’120’ ilford

6. noiretblanc france paris nb blancoynegro

7. selfportrait me 365days portrait self

8. portrait people face black man

9. unitedkingdom england london monochrome blackwhite

10. white black blackwhite

11. street urban city newyorkcity manhattan

12. tree cloud nature sky winter
13. cat pet animal dog kitty

14. black white light

15. child kid portrait girl boy

16. beach sand ocean sea water

17. flower macro nature

Night
1. california sanfrancisco sanfranciscobayarea city urban

2. newyorkcity manhattan lights christmas newyork

3. france paris nuit europe

4. japan tokyo light geotagging city

5. thestand sky cloud luna tree

6. london unitedkingdom england riverthames lights

7. party people friends recreation portrait

8. neon sign lights

9. sky cloud sunset star tree

10. italy notte rome roma

11. light darkness street color red

12. city lights urban street light

13. long exposure longexposure light lights

14. lights black darkness white street

15. water bridge reflection river lights

16. australia sydney melbourne

17. germany nacht berlin

18. building lights light architecture tree

19. canada ontario toronto

Reflection
1. selfportrait me mirror 365days self

2. beach sunset sea cloud sky

3. lake tree landscape nature mountain

4. nature tree bird pond green

5. night light river lights bridge

6. building architecture glass sky blue

7. tree autumn river leaf pond

8. light shadow color glass mirror

9. unitedkingdom england london

10. sky cloud blue tree

11. mirror portrait self automobile girl

12. macro drop closeup

13. black white bw blackandwhite
14. window glass shop street

15. red blue green yellow color

16. newyorkcity manhattan newyork

17. sunset sun sky

Pyramid
1. itza chichenitza maya mexico chichen
2. france museum glass europe architecture

3. sanfrancisco transamerica california francisco san

4. giza cairo sphinx khufu africa

5. mexico ruins chichenitza mayan maya

6. mexico ruins mexicocity teotihuacan puebla

7. mexico teotihuacan guatemala maya tikal

8. mountain switzerland niesen hurni christopher
9. luxor lasvegas nevada casino hotel

10. sky cloud architecture blue building

11. camel cairo saqqara sand desert
12. france night bw pyramide blackandwhite

13. rome italy piramide roma museo

14. glastonbury festival stage glastonburyfestival

15. mexico travel chichen itza trip

16. alberta edmonton canada muttartconservatory conservatory

17. poodle babyboy royalcanin keops love
18. night light lights

19. galveston texas moodygardens

20. france architecture fountain

Figure 4: Results for Black and white, Reflection, Night and Pyramid (showing at most 5 tags per group).

of structure and the number of groups also play an impor-
tant role. 9 datasets required less than 20 minutes, with
Eiffeltower being the quickest taking only 3 minutes. The
remaining datasets took longer than that, with timings rang-
ing from 1 hour for Fun and HDR, up to 20 hours for Ar-
chitecture and Portrait.

These running times indicate that the method should be
used offline, not online at query time. For most queries, sta-
bility of the resulting groupings should be high, implicating
that the algorithm does not need to be re-run often.

5.6 Discussion
Using compression, the FindTagGroups algorithm aptly

finds significantly large and homogeneous groups in tag data.
The groupings usually contain between 20% and 40% of the
photos in the database, a fair amount given the sparsity of
the data. Compressibility shows that the groups are more
homogeneous than the original database, while there is no
discernible structure left in the remaining database.

Manual inspection of the groups shows that the quality of
the groupings is high; a manageable number of semantically
coherent groups is found. As each group is characterised
by a small set of tagsets, it is easy to give intuitive group
descriptions using tag clouds. The grain of the groups re-
turned by the algorithm can be fine-tuned by the end-user:
he may either wish for more, smaller and explorative groups
or prefer less, larger and conservative groups.

A qualitative comparison to Flickr clusters is difficult, but
by simulating these clusters we showed that Flickr clusters
leave more structure in the database than our method.

Data preparation is very important, due to the amount of
noise present in user-generated tagsets. The method based
on Wikipedia redirects solves many problems with synonyms
and other linguistic issues.

In the experiments we focus on pictures, but our algorithm
can find groups for any type of tagged resource. Apart from
improving usability of tag searching, groupings could also
be used for applications like tag recommendation [12,13].



6. RELATED WORK
The main reference for our work is Flickr clusters. Even

if the technical details are not public, by observing the re-
sults we can infer (1) that it clusters tags, as the same tag
can not belong to more than one group, and (2) that the
maximum number of clusters is 5. As said in the intro-
duction our method finds groups of pictures, i.e. groups of
tagsets, instead of groups of tags, and it aims at produc-
ing a much more fine grained grouping. A consequence of
having a larger number of groups is that they have larger
cohesiveness.

Begelman et al. [2] propose to first build a graph of tags
and then to apply a spectral bisection algorithm in combi-
nation with modularity measure optimization. Similar to
Flickr clusters, they cluster the tags and not the resources
(URLs). Another difference with our work is that they try to
cluster the whole tag space, e.g. for creating multiple, more
cohesive, tag clouds instead of a unique large tag cloud. In-
stead we focus on the result set of a given query.

Recently, three other papers [3, 10, 15] have studied the
use of tags from large-scale social bookmarking sites (such
as del.icio.us) for clustering web pages in semantic groups.
Ramage et al. [10], explore the use of clusterings over vec-
tor space models that includes tags and page text. In this
vector space k-means is compared to a novel generative clus-
tering algorithm based on latent Dirichlet allocation. Zhou
et al. [15] investigate the possibility of devising generative
models of tags and documents contents in order to improve
information retrieval. Their holistic approach combines a
language model of the resources and the tags with user do-
main categorisation. Another work considering resources,
tags, and users in an unifying framework is by Grahl et
al. [3]. They present a conceptual clustering where first tags
are clustered by k-means, then the FolkRank [6] algorithm
is applied to discover resources and users that are related to
each cluster of tags. Yeung et al. [9] also focus their analysis
on resources-tags-users triplets, in particular for tag disam-
biguation.

Subspace clustering [7] tries to find clusters in ‘subspaces’
of the data, where a subspace is usually defined as subsets
of both the data points and attributes. There are two im-
portant differences with our method. First, tags are not
dimensions and the fact that a tag is not present may mean
different things – we only look at the tags that are present.
Secondly, we do not attempt to group all data, which sub-
space clustering methods still do.

7. CONCLUSIONS
We propose an algorithm that addresses the problem of

finding homogeneous and significantly large groups in tagged
resources, such as photos. The method is based on the MDL
principle and uses the Krimp algorithm to characterise data
with small sets of patterns. The best group is the group
that gives the largest gain in compression, i.e. it can be
compressed much better as a group than as part of the entire
database.

We perform experiments on a large collection of datasets
obtained from Flickr; the data consists of tagsets belonging
to photos. A pre-processing technique based on Wikipedia
redirects solves many problems typical for this type of data.
Experiments show that semantically related groups are iden-
tified and no structure is left in the database.

8. REFERENCES
[1] M. Ames and M. Naaman. Why we tag: motivations

for annotation in mobile and online media. In CHI
2007: Proc. of the SIGCHI conf. on Human factors in
computing systems, pages 971–980. ACM, 2007.

[2] G. Begelman, P. Keller, and F. Smadja. Automated
tag clustering improved search and exploration in the
tag space. In Proc. of Collaborative Web Tagging
Workshop at WWW 2006, 2006.

[3] M. Grahl, A. Hotho, and G. Stumme. Conceptual
clustering of social bookmarking sites. In LWA 2007:
Lernen - Wissen - Adaption, 2007.

[4] P. D. Grünwald. Minimum description length tutorial.
In P. Grünwald and I. Myung, editors, Advances in
Minimum Description Length. MIT Press, 2005.

[5] J. Han, J. Pei, and Y. Yin. Mining frequent patterns
without candidate generation. In ACM SIGMOD
Conference, pages 1–12, 2000.
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