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Abstract

Understanding query reformulation patterns is a key step towards next
generation web search engines: it can help improving users’web-search ex-
perience by predicting their intent, and thus helping them to locate information
more effectively.

As a step in this direction, we build an accurate model for classifying user
query reformulations into broad classes (generalization,specialization, error
correction or parallel move), achieving 92% accuracy. We apply the model
to automatically label two large query logs, creating annotated query-flow
graphs. We study the resulting reformulation patterns, finding consistency with
results from previous studies done on smaller manually annotated datasets,
and discovering new interesting patterns, including connections between
reformulation types and topical categories.

Finally, applying our findings to a third query log that is publicly available
for research purposes, we demonstrate that the our reformulation classifier
leads to improved recommendations in a query recommendation system.

1. Introduction

Information retrieval is an interactive and iterative process:
only in approximately half of the cases an information need is
satisfied with just a single query [1], [2]. In the other half of
the cases, the user has toreformulateher initial query because
it was over- or under-specified, or did not use terminology
matching relevant documents, or simply contained errors or
typos. The picture is made even more complex by the fact
that, although queries are typically short [3], they usually
form together chains of topically-related queries [4] sharing
the same search goal. There is a general research trend in Web
Information Retrieval towards trying to understand those tasks
instead of looking at queries in isolation. The applications of
this knowledge include building new or better search tools,
such as query recommendation systems [5], [6] and improving
the relevance of search engine results [7], among other goals.

The main source of information for understanding users’
behavior and intent in web search arequery logs. Extracting
behavioral patterns from the wealth of information contained
in query logs, is a key step to improve the service provided
by search engines and to develop innovative web-search
paradigms. In particular, and this is the focus of this paper, by
mining query logs we can understand the dynamics underlying
the query reformulation process, and use this knowledge in ap-
plications aimed at improving the user web-search experience.

In the following we process a query log first by applying
the session segmentation model by Boldiet al. [8]. The output
of this model are search missions: sequences of queries with
a similar information need [4], [9].

Once search missions are determined, we focus on inferring
the chain of reformulations underlying the search mission.
First, for each query pair we want to determine which query
reformulation type (abbreviated QRT) the user was doing.
Second, from the whole search mission we want to extract
the overallstrategyfollowed by the user.

Our main contributions in this paper are:

1. Reformulation model.We show that accurate automatic
classification of QRTs is possible. Learning automaticallyfrom
a human-labeled query log sample, we build a model for
automatic classification of QRTs (Section 4). Our model has
a rather high accuracy,≈ 92% discriminating among four
reformulation types. The classifier is able to predict correctly
even very difficult cases. We describe in detail the process
followed to build the model, and then we inspect the model
behavior, e.g. with respect to the topical categories of the
queries in the reformulation. To the best of our knowledge this
is the first work learning a model for automatic classification
of QRTs by mining a query log.

2. Reformulation strategies.Thanks to our model, we can
automatically label very large query logs and analyze them
(Section 6). We transform each search mission into a sequence
of QRTs. Next, we find salient sequential patterns in these data,
which represent high-level search strategies. We analyze tens
of millions QRTs, finding consistency with previous studies
done mostly over small, manually-assessed collections, and
extending those results with new insights.

3. Reformulation graphs. Using our model we can an-
notate the arcs of aQuery Flow Graph[8] with QRTs: we
present a study on the properties of this annotated graph,
including relationships between the various slices induced by
the reformulation types. As an application of our approach,we
study query recommendations based on short random walks on
different slices of the query-flow graph. Our experiments show
that our methods can match in precision, and often improve,
query-click based recommendations without using click infor-
mation. Our results also show that having QRT labels on the
edges is crucial for obtaining high-quality recommendations.

Section 2 describes related work, and in Section 3 we
discuss the taxonomy of QRTs that we adopt in this paper.
Sections 4, 5, 6 and 7 present the model, the characterization,
the sequential patterns, and the graphs obtained. In Section
8 we study an application to query recommendation, while in
Section 9 we summarize our findings and discuss future work.



2. Related Work

Reformulation types. Although the classification of reformu-
lation types is not a new research topic, this paper is the
first attempt to automatically learn how to classify query-
reformulation types (QRTs) by mining a query log, instead of
providing a set of manually-crafted hard rules: the advantage
of our approach stays in its generality (for example, it can be
easily applied to other languages or to more specific domains).

The study of query reformulation types started with the
work of Lau and Horvitz [10], who sampled 4 960 queries
from a query log and manually labeled the transitions they
found, proposing a classification of query-reformulation types
(QRTs). Rieh and Xie [2] manually labeled 313 search mis-
sions and suggested a more fine-grained classification. While
defining the classes of query reformulation types (Section 3)
we have been mostly following their taxonomy.

Jansenet al. [11], [12] used manually-crafted rules to
identify reformulation types (such as “adding one extra word
means specializing the current query”). These rules follow
concepts from [13], and they coincide perfectly with the
definition of the classes, i.e., there’s no automatic learning
involved as in our work. They study patterns in a query-log
containing1.5 million reformulations.
Query graphs. The information extracted from query logs
can be summarized and suitably represented through query
graphs, several examples of which appear in Glance [14],
Craswell and Szummer [15], Baeza-Yates and Tiberi [16]. In
all such proposals, however, the notion of “clicked URL” plays
a central role: for example, in [15] the query graph is bipartite,
with nodes representing queries and documents, and with an
arc connecting a queryq and a documentd iff d was clicked
by some user after submitting the queryq. Conversely, our
model is intentionally simpler in a sense, because it does not
use the clicked URLs.

Particularly relevant for this paper is the application of query
log analysis to the segmentation of sessions into user missions
or chains, introduced by Radlinskiet al. [4]. Successful
examples of such an application were presented by Jones and
Klinkner [9]. In this paper we follow our previous work [8]: we
use the same session segmentation model as a pre-processing
step, and we we adopt the same graph representation of a
query log, namedQuery Flow Graph, in which edges connect
pairs of queries that appear consecutively in the query log,and
are labelled with application-specific information.

Query-recommendations.Most of the work on query recom-
mendation has focused on measures of query similarity [6],
[17]: this is a prudent standpoint, but it often leads to un-
surprising (although correct) recommendations. Baeza-Yates
et al. [5] study the problem of suggesting related queries
issued by other users and query expansion methods to con-
struct artificial queries, whereas Fonsecaet al. [17] discover
related queries with a method based on association rules.
Wen et al. [18] also present a clustering method for query
recommendation based on different notions of distances, and
Joneset al. introduced the notion of query substitution [19].

Craswell and Szummer [15] describe a method based on
random walks on the query-click graph [20], that can be used
to provide query recommendations as follows: given the input
query, it computes the personalized PageRank [21] of all the
other queries and then picks the top ones as recommendations.
In Section 8 we use their method as a baseline when study-
ing the application of our work to query-recommendations.
Fuxmanet al. [22] experiment with a similar approach in the
context of finding related keywords for advertising. Mei, Zhou
and Church [23] study a related system based on hitting time.

3. Defining Query Reformulation Types

Whenever the user enters two queries in sequence, we
refer to the connection between the two queries as aquery
transition. If the user stays in the same search mission, we
refer to this connection as aquery reformulation. The goal of
this work is to create a query reformulation model, and thus
the first task is to define which are the target categories for
the model. We adopt a taxonomy of query transitions inspired
by Rieh and Xie [2], with some differences that we describe
next.

Conceptually, our taxonomy has two dimensions, depicted
in Figure 1. One dimension is found along the generalization-
specialization axis, and the other dimension along the dissim-
ilarity axis. As we move left to right along the dissimilarity
(horizontal) axis, we find a continuous in which the syntactic
and semantic gap between two queries gets larger and larger.
As we move to the top or to the bottom along the specificity
(vertical) axis, we find respectively reformulations towards
more general or more specific queries.

Fig. 1. Graphical depiction of transition types.

Dissimilarity axis. We discretize the dissimilarity axis as
follows. We start with zero dissimilarity (Same query), mov-
ing on to Error correction: the user is trying a different
spelling or capitalization of a query (e.g. “califrnia”
and “california”). Next we find Equivalent rephrasing:
changing the wording of the query, but keeping exactly
the same goal, in the sense of [9] (e.g. “used car” and
“second-hand car”). Then we findParallel move: a mod-
ification of the query from one aspect of an entity to something
related but not equivalent (e.g.: a “hotel in Dublin” and
“flights to Dublin”).



Finally, we havemission change: the user is completely
changing topic and she is looking for something else [4], [9].
In the right side of Figure 1, the hyperplane separatingMission
changefrom the rest represents the breaking of sessions into
search missions. In our case we apply the model in [8] for
this part.

Our classification of reformulations departs from the one
proposed in [2] in the sense that they use a more fine-
grained taxonomy (including classes such as parallel move,
replacement with synonym, term variation, operator usage,
type of resource and domain suffix). The work in [11], [12]
presents a similar taxonomy, but they also distinguish between
user-initiated reformulations and reformulations recommended
by the search engine, and consider changes in the collection
being queried, which in our case is always the Web. Both
scenarios are outside the scope of the present paper.

Specificity axis. Along the vertical axis instead we have
GeneralizationandSpecialization. Generalization occurs when
the new queryq′ is more general thanq (e.g.: “camping” to
“outdoor activities”); in some cases (but not all of
them) a generalization can be automatically identified because
q′ is a conjunction with a proper subset of the terms ofq; this
type of rule is used in the manually-built classifier in [11].In a
specialization, instead, the new queryq′ is more specific than
q (e.g. “animal pictures” and “photos of African
lions”).

We expectGeneralizationandSpecializationto be related.
A generalization reflects the user’s desire to increase recall,
whereas a specialization is the need to improve precision. We
also expect some specific properties from these two transition
types. For instance, we expect that both of them should define
a transitive relation. Also, we expect that they should be anti-
symmetric, given that, for instance, two queries can not be
simultaneously a specialization of each other. Of course we
do not expect these properties to hold deterministically given
the noise present in the query log.

4. Learning a Query Reformulation Model

In this section we describe the process we followed in order
to build a model for query-reformulation type classification.

Training data. We started from a set ofconsecutivequery
pairs (q, q′), sampled from a query log of the Yahoo! search
engine in 2008 and segmented into search missions using the
model of [8]. In order to create a training set for our QRT
classification problem, a group ofeditors manually labelled
the set of query pairs(q, q′) in each search session with one
of the reformulation types described in Section 3. In cases two
or more editors disagree on the type of a query reformulation,
the query pair was removed from the training set. This left us
with a set of 1375 labelled examples, of which we used 2/3
for training and 1/3 for testing.

Features.We used a set of27 features to build our model for
QRT classification, including features from [8], [24], [13], [9]
that have shown to be also effective for query segmentation.

TABLE 1. Description of the features extracted for each
query reformulation (q, q′).

Session-related features

[f1] Number of sessions in which reformulation(q, q′) occurs;[f2] the same of [f1]
divided by the number of sessions in which(q, x) occurs (for anyx); [f3] the same
of [f1] divided by the number of sessions in which(x, q′) occurs (for anyx); [f4]
among all sessions containing(q, q′): average number of clicks since session begin,
and [f5] since the query preceding(q, q′); [f6] average session size of other sessions
containing(q, q′); [f7] average position in session expressed as number of queries
beforeq since the session begun, and[f8] the ratiof7/f6; [f9] and [f10] fraction of
occurrences in which this pair is the first (last) pair in the session.

Temporal features

[f11] average time elapsed betweenq andq′ in each session in which both occur;[f12]
sum of1/ti whereti is the elapsed time between a queryi and the previous event
in a session.

Textual features

[f13] Levenshtein distance (a.k.a. edit distance);[f14] and [f15] length in characters of
q andq′ respectively;[f16] the differencef15−f14; [f17] the ratiof16/f14. Then
each query is turned into a bag of character tri-grams and we take[f18] the cosine
similarity, [f19] the Jaccard coefficient, and[f20] the size of the intersection between
the two bags.[f21], [f22] and[f23] the same similarity measures but on stemmed terms
instead of tri-grams.[f24] and [f25] number of terms inq andq′; [f26] the difference
f25 − f24, and [f27] the ratiof26/f24.

For efficiency reasons, we used only features that consider the
query sequences and the clicks of users, but that do not require
access to the resulting URLs or page snippets. Although the
latter information might be very powerful (or even decisive)
to determine the query reformulation type, we wanted to limit
ourselves to features that could be computed very quickly with
little computational overhead. We note that all our features are
available at run-time: for instance the “average session length”
is the average over previously seen sessions containing a given
query pair, not the session length of the current session which
is unknown before the session ends. All the features passed
a features selection phase in which we evaluated each feature
relevance w.r.t. our target variable (i.e., query reformulation
type). The features are presented in Table 1, and include
session features (statistics relative to the sessions in which
the pair(q, q′) occurs, such as average session length, average
position of the queries in the sessions etc.), temporal features
(e.g., average time difference betweenq andq′ in the sessions
where (q, q′) occurs) and textual features (textual similarity
measures; some of them turn each query into a bag of words,
and some into a bag of character trigrams).
Modelling. Standard methods such as boosted decision trees
showed an accuracy of approximately85% in predicting query
reformulation types. The model that we built after trying sev-
eral induction methods for our classification problem, exhibits
an accuracy of92% on a test set of unseen cases.

Instead of directly tackling the 4-classes problem, we built
four distinct binary classification problems, where in each
problem the target variable is being or not a certain QRT
(e.g., is G?, is S?, etc.), plus a final 4-classes classifier for
the undecided cases. Each of the five models is a rule-based
classifier built with C5.0, the successor of the well-known
C4.5 decision tree induction algorithm [25]. We placed the
classifiers in cascade as in Figure 2, using a greedy method
for optimizing the ordering of the individual classifiers.

The objective of the cascade is make some decisions with
very high precisionand put those cases aside. The rationale
for this is that at this stage we do not care much aboutfalse



TABLE 2. Example of difficult cases in the test set
classified correctly. Overall accuracy is 92%

q q′ QRT

dango japanese cakes G
Find somebody in Germany Find my friend in berlin S
Nutrition Vegetarian Society S
ikea corner vanity units S
sport PSV Eindhoven v Tottenham S

Fig. 2. Depiction of our QRT classification model.

negatives: they are not definitively errors, as they still have the
chance to be classified correctly later by the fifth classifier. In
order to boost precision (i.e., achieving very low number of
false positives, while paying in terms of recall) while building
the first 4 models we used the possibility of defining different
misclassification costsfor different kind of errors: e.g., telling
to the classifier induction algorithm to weight a false positive
the double of a false negative.

As examples pass through a classifier, not only the training
set is reduced in number of examples, but it is also enriched in
features. In fact, to each example that is predicted as negative,
it is attached the confidence with which the classifier has done
such a prediction.

Our model is able to achieve a high accuracy also thanks
to some very difficult prediction that it is able to do correctly.
In Table 2 we report some of these difficult predictions.

Consider the example on the first row, that inspired the title
of this paper: our classifier is able to correctly determine that
the reformulation from “dango” to “japanese cakes” is
a generalization, even in the absence of textual clues.

5. Empirical Study of Query Reformulations

Using our model we can automatically label query transi-
tions in very large query logs to analyze typical reformulation
patterns.

Datasets.We studied two large datasets from Yahoo! query
logs. The first one corresponds to the searches in the Ya-
hoo! UK search engine, from which the training data were
extracted in the previous part. The second one corresponds to
a completely different dataset from searches in the Yahoo! US
search engine in 2008. All the queries from each user during
a 1-month period are put together, and then segmented into
search missions. Missions with a single query are discarded.
Figure 3(a) reports the distribution of mission length in the
two datasets.

(a)

UK US
G 4.4% 9.5%
S 37.5% 30.1%
C 10.4% 5.0%
P 47.7% 55.5%

n = 6M n = 10M
(b)

US≥ 5 Rie & Xie[2]
G 11.0% 12.7%
S 26.5% 23.4%
C 4.0% 5.2%
P 58.5% 56.2%

n = 4M n = 2K
(c)

Fig. 3. (a) distribution of the number of reformulations
per search mission, in the two datasets. (b) and (c)
distributions of QRTs (query-reformulation types).

The size of the datasets we analyze is much larger than those
reported in the literature for this problem (313 chains with5
QRTs each in [2], and about1.5M reformulations in Jansenet.
al [11], [12]): our UK and US datasets contain more than3M
and4M search missions respectively (corresponding to6.5M
and10.5M QRTs, resp.). Even when focusing only on search
missions of length at least 5, we have222K chains (1.5M
QRTs) in the UK dataset, and527K chains (4.3M QRTs) in
the US dataset. In the following we denoteUK≥ 5 andUS≥ 5
the two datasets when we only consider long chains.

Query reformulation distribution. Each query reformulation
in each mission was labeled with the model we described in
Section 4. Figure 3(b) reports the distribution of reformulation
types, which is consistent with the one of Rieh and Xie [2],
considering the mapping between the query categories of each
work and their minimum-length constraint. Also consistently
with [2], the classP is largely the most populated (47%-
58%). It is worth noting that this is slightly overestimated,
as it is partially due to somefalse negativeerrors of the
model used to segment sessions into chains: we have observed
that mission changesthat are not detected by that model
are recognized asP (as it might be expected) by the model
for QRT classification. On the generalization-specialization
axis, specializations (30%-38%) are much more frequent than
generalizations (4%-10%). This difference is however largely
reduced when focussing on chains of length 5 or more, as
shown in Figure 3(c).

Relationship with query topics.We conducted another exper-
iment in order to assess how query reformulations and mission
changes relate to querytopics. There are many approaches
to topical query classification, e.g. [26]. In this experiment
we issued each query to our search engine, obtaining the top
20 documents, and we used an in-house automatic document
classifier that maps them to the most likely Yahoo! Directory
category for each document. Next we did a majority voting
among the topics of the documents associated to the query,
to determine the query topic. To increase precision at the
expense of coverage, if the main topic was not at least twice as
prevalent as the second topic we considered the query topic as
“unknown”. This is a slow yet very simple query classification



TABLE 3. Fraction of transitions where the top-level topic
remains the same, and salient topic-transitions.

Topic
QRT match Most salient topic transitions

UK 64% 1. reference→reference
G 2. government→government

US 64% 1. reference→government
2. reference→reference

UK 59% 1. reference→reference
S 2. government→ government

US 71% 1. reference→reference
2. government→ government

UK 54% 1. reference→computers and internet
C 2. news and media→news and media

US 53% 1. reference→health
2. science→social science

UK 46% 1. arts→reference
P 2. reference→government

US 48% 1. reference→education
2. social science→government

UK 22% 1. computers and internet→recreation
X 2. entertainment→education

US 23% 1. recreation→health
2. soc. and culture→computers and internet

method that is nevertheless quite precise. We used it to classify
by topic 100K queries from the UK data and 100K queries
from the US data. For each query transition, we compared the
top-level topic of the two queries involved in the transition: this
is usually something very broad as “science→ health”, etc.
If the two topics coincide, we count this as a top-level topic
match in Table 3. In the table we denote mission changes with
the transition typeX.

Obviously, whenever there is a mission change, the user is
more likely to change the broad topic than to stay in the same
broad topic. The opposite occurs in the case of generalization,
specializations, and error corrections, in which the user is
more likely to stay in the same broad topic. As expected,
parallel moves are more ambiguous from the perspective of
broad topics.

We verified whether some broad topics would more likely
of motivating certain transition types than others. Table 3
shows some top-level topic pairs with the highest ratio of their
probability conditioned to each transition type with respect to
their prior probability. For generalization (G) and specializa-
tion (S), it is frequent to observe pairs of queries that are both
reference search (dictionary/encyclopedia) or searchingfor
some government-related topics. In the case of parallel moves
(P), switches to and from reference search are common. As for
mission change (X), we observe an interesting fact: there are
frequent changes from and to recreation/entertainment topics
which may signal alternating between work/study related
activities and leisure.

Entropy of query reformulations. We looked at the entropy
of the distribution of the next QRT among those that are
observed on a query log, for a given query. To consider only
queries for which we have enough information, we averaged
the entropy over all queries having frequency larger than 100.
We also looked at the extent to which the reformulation type
is determined by the query. An average value close to 0
would mean that the query determines almost completely the
reformulation type (for instance, that certain queries almost

TABLE 4. Entropy measures
UK data US data

Reformulation-type entropy 1.1 1.0
Next-query entropy:
Generalization (G) 1.0 1.3
Specialization (S) 5.4 2.6
Correction (C) 1.1 1.3
Parallel move (P) 6.5 4.0

always are followed by a correction, while other queries almost
always are followed by a parallel move, and so on). The actual
value, shown in Table 4, is close to 1 meaning than when
writing a reformulation for a query, the user will decide mostly
between two reformulation types on average.

We also examined thenext-query entropyfor a query q,
given a reformulation typet. We averaged this over the same
queries as with the reformulation-type entropy. The result
is shown in Table 4. The next-query entropy is small for
generalizations and error corrections, and close to 1 meaning
that there is some variability: when generalizing or doing small
changes in the query, users basically pick between 2 possible
reformulated queries on average. The next-query entropy for
specialization and parallel moves is substantially higher, from
3 to 6 bits, meaning that the users pick between several
choices on average (the entropy may be lower in our US graph
probably due to the removal of pairs with count equal to one).

6. Query Reformulation Strategies

In this section we present some observations about se-
quences of reformulations, which represent abstractsearch
strategiesfollowed by users. We start by transforming each
search mission into a sequence of QRTs that we represent as
strings with anX at the beginning and at the end, signaling
the border of a search mission.

Conditional reformulation probability. In Table 5 we re-
port the conditional probabilities of QRTs depending on the
previous QRT. There are several insights from this table.
Specializations are more likely to occur at the beginning ofa
chain; this means that many users starts with a broad query .
Specializations are more likely to occur after a generalization,
and conversely, the probability of a generalization is boosted
after a specialization; so generalizations and specializations
seems to be present in alternating order. Finally, error correc-
tions are common at the beginning or end of a chain, or after
another error correction.

TABLE 5. Ratio of the conditional probability of a QRT
given the previous QRT, with respect to the priori

probability.

UK dataset US dataset
Current Current

Next G S C P X G S C P X
G 0.8 1.7 0.3 0.4 1.2 0.6 2.0 0.6 0.6 0.9
S 1.3 0.7 0.5 0.7 1.6 1.4 0.6 0.6 0.7 1.6
C 0.3 0.4 1.2 0.6 1.8 0.5 0.5 4.0 0.7 1.6
P 0.5 0.9 0.6 0.8 1.4 0.6 0.8 0.7 1 .0 1.3
X 1.4 1.4 1.7 1.5 0.0 1.3 1.4 1.5 1.4 0.0



TABLE 6. Reformulation patterns with a frequency much
higher than the expected one assuming independence.

Frequency
Pattern UK US UK≥ 5 US≥ 5

XC 12.7% 5.6% 7.8% 4.5%
SG 2.8% 7.6% 16.4% 30.6%
GS 2.5% 6.1% 17.7% 30.3%
CX 11.3% 4.6% 6.1% 3.1%
XS 38.2% 35.5% 44.5% 34.5%
CC 1.4% 1.3% 5.1% 4.8%
SGS 0.9% 2.5% 8.6% 14.6%
CCC 0.3% 0.2% 1.5% 1.4%
GSG 0.2% 1.0% 2.5% 7.1%
SSG 0.7% 1.8% 7.6% 10.9%
XSG 1.7% 4.0% 4.1% 6.9%
SGX 1.3% 3.1% 2.2% 4.8%

Frequent reformulation patterns. We also looked for fre-
quent reformulation sequences, in which frequency is the
number of strings in the database containing a given pattern.
We selected some patterns by means of aninterestingness
measure defined as the ratio between the real frequency and the
expectedfrequency which is computed assuming independence
of QRTs. Table 6 lists a few of the interesting patterns we
found; they confirm and complement the findings in Table 5:
error corrections are more frequent at the beginning of a chain,
they also tend to appear contiguously, and specialization-
generalization tend to appear in alternating order.

7. Annotated Query-flow Graph

The Query Flow Graph introduced by Boldiet al. [8]
is a directed graphG = (Q,E), where Q is the set of
queries,E ⊆ Q × Q is the set of query transitions, and
edges may hold application-dependent information. In our
case we annotate the edges with two labels: a weight and
the QRT as given by our model. Weights are defined as
w(q, q′) = r(q, q′)/

∑
k:(q,k)∈E r(q, k), where r : E → N

represents the number of times the transition was observed in
the query log, so the weightw(q, q′) represents the probability
of query q′ following query q in a session. An small excerpt
of this graph is shown in Figure 4.

We build two large query-flow graphs. For the UK dataset,
we used all transitions, whereas for the US dataset, we
discarded all hapax transitions (those with count one). The
resulting graphs have the following sizes:

– UK: 21, 247, 414 nodes,21, 216, 958 arcs (0.99 arcs/node);
– US: 58, 312, 610 nodes,53, 960, 925 arcs (0.93 arcs/node).

We studied the graph by filtering according to the transition
type; this way, each query-flow graph gave rise to five “slices”
of the graph, one for each transition type. Table 7 presents
some key statistics about each slice. All graphs are extremely
sparse and essentially acyclic. If you delete from the graph
all isolated nodes and isolated arcs (an arc(q, q′) is isolated
iff q has outdegree 1 andq′ has outdegree 0), the fraction of
remaining nodes is extremely small.

Anti-symmetry and correlations As explained in Section 3,
some of the transition types should exhibit some natural prop-
erties; for example, bothG and S should be anti-symmetric

TABLE 7. Basic properties of the query-flow graphs.
Density SCC Reciprocity

arcs per node (largest) ρ(q, q′,−)
UK US UK US UK US

G 0.04 0.06 0.00% 0.00% 0.0% 0.0%
S 0.31 0.26 0.25% 0.07% 0.2% 0.8%
C 0.07 0.05 0.14% 0.20% 1.7% 12.1%
P 0.41 0.25 2.51% 2.41% 1.6% 14.8%
X 0.17 0.39 1.10% 1.45% 3.1% 26.3%
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Fig. 4. Excerpt of the query-flow graph around the query
“barcelona hotels” extracted from the UK dataset.

and transitive. Of course, we cannot expect these properties to
hold deterministically, both because of the presence of noise
and because we should take into account the frequency of each
observed transition. A reasonable measure of symmetry is a
weighted reciprocity that we define as follows: letr(q, q′, t)
be the count associated with arc(q, q′) in a given slicet,
or zero if (q, q′) is not an arc int, and defineρ(q, q′, t) =
min(r(q, q′, t), r(q′, q, t))/max(r(q, q′, t), r(q′, q, t)).

In the ideal case, ift defines a perfectly anti-symmetric
relation this quantity should be 0 for all arcs int, whereas it
should be 1 for perfectly symmetric relations.

The averageρ(q, q′,−) for all arcs (q, q′) is shown in
Table 7: notice that the values are all very small, due to the
sparsity of all graphs, but they are significantly closer to zero
(or even exactly zero) forG andS, whereas they are several
times larger for the other transition types.

8. Query Recommendation

Automatic detection of QRT is interesting from a web
mining perspective but also has applications to improve web
search. This section describes one such application (query
recommendation) and summarizes an experiment comparing
it to previous work. Further details can be found in [27].

Experiments.The experiments on query recommendations are
done over a recent query-log dataset available for academics
for research purposes: the “Spring 2006 Data Asset”1 dis-
tributed by Microsoft Research. The data we used consist of a
query log excerpt with 15 million queries, filtered to remove
adult queries. Each record includes a query, an anonymous
session-id, a timestamp, and the shown/clicked results. We
processed the query log to create an annotated query-flow
graph as in the previous sections. The query-flow graph is
then sliced, and on each slice a random walk is performed

1. http://research.microsoft.com/users/nickcr/wscd09/



Fig. 5. Average precision@5 (useful or somewhat useful recommendations) per system.

starting from the input query, and using the resulting distri-
bution for query recommendation in two different ways: in
the absolutemethod, recommendations are sorted based on
the probability they obtain in the random walk described; in
the relativemethod, recommendations are sorted based on the
ratio between the values obtained in the previous case and the
PageRank values obtained by using no personalization (i.e.,
starting at random at any node). We perform the same experi-
ments on transposed graph slices, unions of graph slices, orthe
composition2 of two slices. We repeated the experiments with
1, 5 or 10 iteration steps (we omit the results obtained with
more than10 steps, as we observed no more improvement).

As a baseline, we implemented a graph-based query-
recommendation system following the method by Craswell and
Szummer [15], using both the “forward’ and the “backwards”
weighting schemes, with 6 or 12 iteration steps (an even
number of steps is required, because their graphs are bipartite,
and we need to end the random walk in a query and not in a
document); we observed no improvements with larger numbers
of iterations.

Assessment.The evaluation of the recommendations produced
by the different systems was done as follows. A set of 114
input queries having frequencies between 700 and 15,000
was selected at random; we used these frequencies limit to
avoid very frequent or infrequent queries. Test queries were
very varied, e.g.: “Grey’s anatomy”, “ Juno”, “ Maggie
Gyllenhaal’, “ CNN news”, and “guitar tabs”; we
discarded all the queries containing a domain name. Then
we generated an evaluation pool with the union of the top 5
recommendations from each system; this yielded on average
53.4 different recommendations per query.

Next, a group of 5 assessors were asked to rate each
recommendation asuseful, somewhat usefulor not useful.
From the assessments, 62% of the recommendations were
considered not useful, 12% somewhat useful, and 25% useful;
for the remaining 1% the editors could not assess due to non-
English queries or other reasons.

2. By “composition” of two graphs with the same node set we mean the
multiplication of the respective adjacency matrices in the semiring having
multiplication as sum and maximization as product.

Results. Figure 5 contains a chart of the best performing
variant of each system. The average precision@5, is the
probability that a top-5 recommendation issued by a system
is labeled as “useful” or “somewhat useful”. The significance
p of the difference between two systems is the probability of
observing for the second system the obtained score or lower by
chance, assuming that both systems have the same accuracy.
Only the best-performing parameter setting for each system
is shown in the figure in parenthesis as a pair (number of
iterations, scoring method). Notice that we are here testing
our systems against a very strong null hypothesis, because only
the top 5 recommendations are being considered, and many of
them are correct; so the probability of guessingamong them
is very high, even at random.

We observe that the usefulness of the recommendations
decreases as we introduce more transition types: specialization
transitions seem to produce the most useful recommendations
(Queryflow-S), whereas adding parallel moves (Queryflow-
SP), corrections (Queryflow-SPC), and eventually generaliza-
tion (Queryflow-GSPC) or even transitions that are not part of
the same mission (Queryflow-GSPCX) results in less useful
recommendations. This means that being able to discriminate
among QRTs is key to produce better recommendations.

The “absolute” scoring method is usually better than the
“relative” scoring method, and doing multiple iterations is
often better than doing just one. The recommendations based
on the baseline have either the same performance as recom-
mendations using Queryflow-S, or a lower performance, at a
significance ofp = 0.07 (significance not drawn in the chart).

9. Conclusions

Main findings. During the course of this research, we have
found that it is possible to automatically determine the type
of a query reformulation, if the appropriate features are used.
We have achieved 92% accuracy in distinguishing among
4 main classes of query reformulations, noticing that the
learning scheme is important as it can exploit the fact that
some class boundaries are more fuzzy than others. We applied
the classifier to a large query log and studied reformulation
paths that are the sequences of reformulations that a user
does in the course of a search mission. This allowed us to
study query reformulation patterns, matching some resultsof



previous studies done over much smaller data set using manual
assessments, and extracting new patterns which are discover-
able giving that our automatic classifier enables the processing
of a massive amount of data. From some of the patterns we
extracted, we can see for instance that generalization and spe-
cializations appear frequently together in alternating order, and
that error corrections are more frequent either at the beginning
of a search mission or after another error correction. When
mapping query transitions to topical categories we see that
reference search is a typical context for generalizations and
specializations, and that many mission changes are associated
to switches from or to entertainment/recreation topics.

We annotated a large query flow graph with transition types,
finding the anti-symmetry of generalization and specialization
there. We also observed that given a query, the distribution
of possible generalizations and error corrections tend to be
more concentrated than the distributions of specializations or
parallel moves.

One of the possible applications of the automatic classifica-
tion of transition type is to generate query recommendations.
In our experiments, we matched (and often improved) the
quality of recommendations obtained using query-click graphs
without using clicks. This means that the information con-
tained in the annotated query-flow graph about consecutive
queries in a session is as useful for this task as the user’s
clicks. Given that both data sources are independent, recom-
mendations produced by a composition of both methods are
worth to be investigated as future work.

Future work. There are several applications of our work to
off-line query-log analysis. A promising application is graph-
regularized automatic query classification. Such a system
would start with a query classifier and a taxonomy of topics,
and incorporate constraints of the type “if queryq′ is a
specialization of queryq, then the topic of queryq′ should be a
descendant of the topic of queryq”. Another application is the
diversification of search engine results. Popular specializations
of a query, obtained automatically from query logs, represent
different aspects of the original query that can be used to help
the search engine include pages covering different user intents.

Finally, simultaneously learning both the query reformu-
lation types and how to segment a session into chains (the
two tasks that we identified and separated in the Introduction)
might be a way of achieving a non-trivial improvement in
accuracy. This would mean formulating our task in simi-
lar terms as, for instance, the task ofpart-of-speechand
bracketingin Natural Language Processing. Also the insights
obtained from the analysis of the graph can be used, e.g. by
imposing an asymmetry constraint between specialization and
generalization during the learning process.
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