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ABSTRACT
Recently, there has been tremendous interest in the phe-
nomenon of influence propagation in social networks. The
studies in this area assume they have as input to their prob-
lems a social graph with edges labeled with probabilities of
influence between users. However, the question of where
these probabilities come from or how they can be computed
from real social network data has been largely ignored un-
til now. Thus it is interesting to ask whether from a social
graph and a log of actions by its users, one can build models
of influence. This is the main problem attacked in this paper.
In addition to proposing models and algorithms for learning
the model parameters and for testing the learned models to
make predictions, we also develop techniques for predicting
the time by which a user may be expected to perform an ac-
tion. We validate our ideas and techniques using the Flickr
data set consisting of a social graph with 1.3M nodes, 40M
edges, and an action log consisting of 35M tuples referring
to 300K distinct actions. Beyond showing that there is gen-
uine influence happening in a real social network, we show
that our techniques have excellent prediction performance.

Categories and Subject Descriptors H.2.8 [Database
Management]: Database Applications - Data Mining
General Terms: Algorithms
Keywords: Social networks, Influence, Viral marketing.

1. INTRODUCTION
In recent years, there has been tremendous interest in the

phenomenon of influence exerted by users of an online social
network on other users and in how it propagates in the net-
work. The idea is that when a user sees their social contacts
performing an action such as joining an online community
(say TapIt1), that user may decide to perform the action
themselves. In truth, when a user performs an action, she

1TapIt is a water bottle refilling network founded in 2008 to
give people free access to clean sustainable water on the go:
tapitwater.com.
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may have any one of a number of reasons for doing so: she
may have heard of it outside of the online social network and
may have decided it is worthwhile; the action is very popular
(e.g., buying an iPhone 4G may be such an action); or she
may be genuinely influenced by seeing her social contacts
perform that action. If there is genuine influence, it can be
leveraged for a number of applications, arguably the most
famous among which is viral marketing [4, 13, 9]. Other
applications include personalized recommendations [17, 16]
and feed ranking in social networks [15]. Besides, patterns
of influence can be taken as a sign of user trust and exploited
for computing trust propagation [6, 23, 5, 18] in large net-
works and in P2P systems.

While many of the applications mentioned above essen-
tially assume that influence exists as a real phenomenon,
two key pieces are missing from the picture. First, while
some empirical studies have reported evidences of influence
propagating on the social linkage [2, 7], others authors have
challenged the fact that influence really exists and that it
propagates between users. Indeed, Watts [22, 20, 21] chal-
lenges the very notion of influential users that are often as-
sumed in viral marketing papers. As well, in a recent pa-
per, Anagnostopoulos et al. [1] have developed techniques
for showing that influence is not genuine and using them,
showed that in the Flickr tagging data, while there is sub-
stantial social correlation in tagging behavior, it cannot be
attributed to influence. This raises the question, is there ev-
idence of genuine influence in any real social network data?
The second missing piece is a systematic study of models of
influence. In particular, all viral marketing papers assume
that they are given as input a social graph with edges la-
beled by the probability with which a user’s action will be
influenced by her neighbor’s actions. To our knowledge, the

question how or from where one can compute these proba-

bilities of influence has been largely left open.

In this paper, our goal is to address both the issues above:
we devise various probabilistic models of influence, and w.r.t.
them we show that influence is genuinely happening in a
real-world social network.

The starting observation is that while real social networks
don’t come with edges labeled with influence probabilities,
they do come with an action log. Informally, an action log
is a table that chronicles any actions performed by every
user. It is thus interesting to ask whether by analyzing the
action log together with the network, we can study the two
questions above. In undertaking such a study, two things
should be kept in mind. First, any models proposed for in-
fluence should be compatible with the assumptions made in



applications such a viral marketing. Viral marketing papers
typically assume a diffusion model of influence which satis-
fies a property known as submodularity. While we defer a
formal definition to Section 4, intuitively it can be thought
of as a law of diminishing returns. Second, the action log
is huge in size. Thus, any algorithms developed for learn-
ing and testing the influence models should make minimal
number of scans over this data.

In this paper, we make the following contributions:

• We propose a solution framework. By starting with the
diffusion models assumed in viral marketing, we elicit
desiderata for models of probabilistic influence. These
include a mandatory submodularity property and a de-
sirable, but not mandatory incrementality property.

• We propose a variety of probabilistic models of influ-
ence between users in a social network. We show that
all of them satisfy submodularity while all with the ex-
ception of one satisfies incrementality. Intuitively, an
incremental model allows efficient testing.

• We develop algorithms for learning (the parameters
of) all the proposed models, taking as input a social
graph and an action log. We optimize the scans and
show that our algorithms can learn all the models in
no more than two scans. A highlight is that some
of our models let us predict not just whether a user
will perform an action but the time by which she will
perform it.

• One of the most accurate models is what we call con-
tinuous time model. Unfortunately, it is the most ex-
pensive to test (it’s not incremental). To mitigate this,
we develop an approximate model called discrete time
model, which is incremental and is much more efficient
to test.

• It turns out evaluating (testing) the learned models is
far from trivial. Thereto, we develop algorithms for
testing all the models learned. The algorithms require
just one scan over the action log.

• Last but not the least, we put the models and algo-
rithms to test on the Flickr data set where for actions,
we take users joining online communities. The data
set consists of a graph with 1.3M nodes and more than
40M edges and an action log with 35M tuples referring
to 300K different actions. Our results show there is
genuine influence between users. In particular, we in-
troduce the metrics of user influenceability and action
influence quotient. Users (actions) with high values for
this metric do experience genuine influence compared
to those with low values. Our results also show that all
proposed models have a reasonable performance, and
continuous time model has the best performance. Dis-
crete time model has an almost identical performance
while it is much more efficient to test. We also show
that our models can predict the time at which a user
will perform an action with an impressive error margin.

Section 2 provides relevant background and discusses re-
lated work. In Section 3, we give a formal statement of
the problem studied while in Section 4, we develop a solu-
tion framework and in Section 5 we present the models for

probabilistic influence. Section 6 presents the algorithms for
learning the models and for evaluating them, while Section 7
presents results from an extensive set of experiments.

2. BACKGROUND AND RELATED WORK
Suppose we are given a social network together with the

estimates of reciprocal influence between individuals in the
network, and suppose that we want to push a new prod-
uct in the market. The idea behind viral marketing is that
by targeting the most influential users in the network we
can activate a chain-reaction of influence driven by word-of-
mouth, in such a way that with a very small marketing cost
we can actually reach a very large portion of the network.
The mining problem of influence maximization is the fol-
lowing: given such a network with influence estimates, how
to select an initial set of k users such that they eventually
influence the largest number of users in the social network.

Domingos and Richardson [4, 13] were the first to consider
the propagation of influence and the problem of identifica-
tion of influential users by a data mining perspective. The
problem is tackled by means of a probabilistic model of in-
teraction, and heuristics are given for choosing the users.

Kempe et al. [9] attacked roughly the same problem as a
problem in discrete optimization (which is known to be NP-
complete), obtaining provable approximation guarantees in
several preexisting models coming from mathematical soci-
ology. In particular their work focuses on two fundamental
propagation models, namely Linear Threshold Model and
Independent Cascade Model. They also proposed a broader
framework that that simultaneously generalizes the Linear
Threshold and Independent Cascade models, and that has
equivalent formulations in terms of thresholds and cascades.
We next recall the threshold formulation.
General Threshold Model. At a given timestamp, each
node is either active (an adopter of the innovation, or a cus-
tomer which already purchased the product) or inactive, and
each node’s tendency to become active increases monotoni-
cally as more of its neighbors become active. Time unfolds
deterministically in discrete steps. As time unfolds, more
and more of neighbors of an inactive node u may become ac-
tive, eventually making u become active, and u’s activation
may in turn trigger further activations by nodes to which
u is connected. In the General Threshold Model each node
u has a monotone activation function fu : 2N(u) → [0, 1],
from the set of neighbors N of u, to real numbers in [0, 1],
and a threshold θu, chosen independently and uniformly at
random from the interval [0,1]. A node u becomes active at
time t + 1 if fu(S) ≥ θu, where S is the set of neighbors of
u that are active at time t.

Under all the propagation models discussed in [9], the
influence maximization problem is shown to be NP-hard.
Kempe et al. however show that the influence spread of a
set of nodes is a function with the nice features of being
monotone and submodular (see Section 4). Exploiting these
properties they present a greedy approximation algorithm.
Indeed, for any monotone and submodular function f with
f(∅) = 0, the problem of finding a set S of fixed cardinality k
such that f(S) is maximal, can be approximated by a greedy
algorithm within a factor of (1 − 1/e), as shown in [11].

A limitation of [9] is the efficiency of their greedy algo-
rithm, which requires to compute the influence spread given
a seed set. For this difficult task they run Monte-Carlo simu-
lations of the propagation model for sufficiently many times



to obtain an accurate estimate, resulting in very long compu-
tation time. A recent line of research [10, 3] has started de-
veloping methods for improving the efficiency of the greedy
algorithm for influence maximization.

Leskovec et al. [10] study the propagation problem from
a different perspective namely outbreak detection: how to
select nodes in a network in order to detect the spread of a
virus as fast as possible? They present a general methodol-
ogy for near optimal sensor placement in these and related
problems. By exploiting submodularity they develop an effi-
cient algorithm based on a“lazy-forward”optimization in se-
lecting new seeds, achieving near optimal placements, while
being 700 times faster than the simple greedy algorithm. In
spite of this big improvement over the basic greedy algo-
rithm, their method still faces serious scalability problems
as shown in [3]. In that paper, Chen et al. improve the
efficiency of the greedy algorithm and propose new degree
discount heuristics that produce influence spread close to
that of the greedy algorithm but much more efficiently.

All the papers discussed above assume the basic frame-
work and propagation models of [9], where the influence
probabilities pv,u on the edges are given as input. In this
paper instead we study how this probabilities can be pro-
duced by mining past influence cascades, or in other terms,
the past behavior of users.

Tang et al. [19] introduce the problem of topic-based so-
cial influence analysis. Given a social network and a topic
distribution for each user, the problem is to find topic-specific
subnetworks, and topic-specific influence weights between
members of the subnetworks. They propose a Topical Affin-
ity Propagation (TAP) approach using a graphical proba-
bilistic model. They also deal with the efficiency problem
by devising a distributed learning algorithm under the Map-
reduce programming model. Moreover, they also discuss the
applicability of their approach to the expert finding problem.

Independently and concurrently with us, Saito et al. [14]2

have studied the same problem we tackle in this paper, fo-
cussing on the Independent Cascade model of propagation.
They formally define the likelihood maximization problem
and then apply EM algorithm to solve it. While their for-
mulation is elegant, it is not scalable to huge datasets like
the one we are dealing in this work. This is due to the fact
that in each iteration, the EM algorithm must update the
influence probability associated to each edge.

3. PROBLEM DEFINITION
We are given a social graph in the form of an undirected

graph G = (V, E, T ) where the nodes V are users. An undi-
rected edge (u, v) ∈ E between users u and v represents
a social tie between the users. T : E → N is a function
labeling each edge with the timestamp at which the social
tie was created.3 We’re also given an action log, a rela-
tion Actions(User, Action, T ime), which contains a tuple
(u, a, tu) indicating that user u performed action a at time
tu. It contains such a tuple for every action performed by
every user of the system. We will assume that the projec-
tion of Actions on the first column is contained in the set of
nodes V of the social graph G. In other words, users in the

2At the time of our submission, this paper was not yet pub-
lished. We thank the reviewers for pointing it to us.
3For convenience, we assume social ties are never broken.
This assumption is inessential.

Actions table correspond to nodes of the graph. We let A
denote the universe of actions. In the following, we assume
for ease of exposition that a user performs an action at most
once. We denote with Au the number of actions performed
by user u in the training set, with Au&v the number of ac-
tions performed by both u and v in the training set, with
Au|v the number of actions either u or v performs in the
training set. Clearly, Au|v = Au + Av − Au&v. We also use
Av2u to denote the number of actions propagated from v to
u in the training set. We next define propagation of actions.

Definition 1 (Action propagation). We say that an
action a ∈ A propagates from user vi to vj iff: (i) (vi, vj) ∈
E; (ii) ∃(vi, a, ti), (vj , a, tj) ∈ Actions with ti < tj; and (iii)
T (vi, vj) ≤ ti. When this happens we write prop(a, vi, vj , ∆t)
where ∆t = tj − ti.

Notice that there must be a social tie between vi and vj ,
both must have performed the action after the moment in
which their social tie was created. This leads to a natural
notion of a propagation graph, defined next.

Definition 2 (Propagation graph). For each action
a, we define a propagation graph PG(a) = (V (a), E(a)), as
follows. V (a) = {v | ∃t : (v, a, t) ∈ Actions}; there is a
directed edge vi ∆t−−→vj in E(a) whenever prop(a, vi, vj , ∆t).

The propagation graph consists of users who performed
the action, with edges connecting them in the direction of
propagation. Observe that the propagation graph is a DAG.
Each node can have more than one parent; it is directed, and
cycles are impossible due to the time constraint which is the
basis for the definition of propagation. Note that the prop-
agation graph can possibly have disconnected components.
In other words, the propagation of an action is just a di-
rected instance (a flow) of the undirected graph G, and the
log of actions Actions(User, Action, T ime) can be seen as a
collection of propagations. When a user performs an action,
we say that it is activated w.r.t. that action. Once a user
activates, it becomes contagious and cannot de-activate. It
may now influence all its inactive friends. The power to
influence the neighbors is what we model as influence prob-
ability. The problem we tackle in this paper is how to learn
influence probabilities among the users, by mining the avail-
able set of past propagations. Formally, we want to learn a
function p : E → [0, 1] × [0, 1] assigning to both directions
of each edge (v, u) ∈ E the probabilities: pv,u and pu,v.

4. SOLUTION FRAMEWORK
In the following, we introduce the framework we adopt

which is an instance of the General Threshold Model. Con-
sider an inactive user u and the set of its activated neigh-
bors S, and suppose that each neighbor v ∈ S activates
after v and u became neighbors. To predict whether u
will activate, we need to determine pu(S), the joint influ-
ence probability of S on u. If pu(S) ≥ θu, where θu is
the activation threshold of user u, we can conclude that u
activates. For ease of exposition, assume individual prob-
abilities of influence between users are static, i.e., are in-
dependent of time. We do not need this assumption for
our results. Since influence probabilities are meant for use
in viral marketing [9] [8], our definitions must be consis-
tent with the diffusion models used in these papers. These



papers typically assume the diffusion models are monotone,
which says the function pu(S) should satisfy: pu(S) ≤ pu(T )
whenever S ⊆ T . Moreover, it should be submodular, i.e.,
pu(S∪{w})−pu(S) ≥ pu(T∪{w})−pu(T ) whenever S ⊆ T .
There can be various ways to define pu(S). In this paper,
for computational ease, we assume that the probability of
various friends influencing u are independent of each other.
Hence, the joint probability pu(S) can be defined as follows:

pu(S) = 1 −
Y

v∈S

(1 − pv,u) (1)

In the context of testing a learned model, we need to be
able to compute and update the influence probabilities on
the fly. That is, as new neighbors get activated, the joint
influence probability needs to be updated. We should be
able to compute pu(S ∪ {w}) incrementally without revis-
iting the neighbor set influence probabilities, i.e., solely in
terms of pu(S) and pw,u. This is not part of the requirement
imposed by the diffusion models assumed for viral market-
ing. Thus, this is a desirable, but not mandatory property.

Theorem 1. The joint influence probability as defined in
Eq. 1 is monotone and submodular. Besides, it can be up-
dated incrementally if the individual influence probabilities
pv,u are static.

Proof. Let S be the set of neighbors of u that are active
and suppose a new neighbor w of u gets activated. The
new joint influence probability pu(S∪{w}) can be computed
incrementally from pu(S) as follows.

pu(S ∪ {w}) = 1 − (1 − pw,u) ∗
Y

v∈S

(1 − pv,u)

= 1 − (1 − pw,u) ∗ (1 − pu(S))

= pu(S) + (1 − pu(S)) ∗ pw,u (2)

The monotonicity can be seen from Eq. 2. The difference
pu(S ∪ {w}) − pu(S) is clearly non-negative as the domain
of individual probabilities is [0, 1]. Similarly, submodularity
can be shown as follows.

pu(S ∪ {w}) − pu(S) − pu(T ∪ {w}) + pu(T )

= (1 − pu(S)) ∗ pw,u − (1 − pu(T )) ∗ pw,u

= (pu(T ) − pu(S)) ∗ pw,u ≥ 0

since, by monotonicity, pu(T ) ≥ pu(S).

User Influenceability. As mentioned in the introduction,
there can be three reasons which prompt any user to perform
an action. First, influence from friends and family members.
Second, she is affected by some external event(s). And the
last is that she is a very active user and is doing things
without getting influenced by anyone.

In this work, we mainly focus on modeling and learning
the influence propagation from neighbors. For some users,
external influence plays a significant role and for others that
is not the case. Users who are initiators of actions and who
are more influenced by external factors are unpredictable
or less influenceable. So, we define an influenceability score
representing how influenceable a user is, as the ratio between
the number of actions for which we have evidence that the
user was influenced, over the total number of actions per-

formed by the user. More precisely we define:

infl(u) =
|{a | ∃v, ∆t : prop(a, v, u, ∆t) ∧ 0 ≤ ∆t ≤ τv,u}}|

Au

(3)
In the equation above, we can use any appropriate value for
the parameter τv,u. We propose to use the average time
delay, defined as follows:

τv,u =

X

a∈A

(tu(a) − tv(a))

Av2u
(4)

where tu(a) is the time when u performs a and A is the
set of actions in the training data. We conjecture that users
with a high value for infl(u) may exhibit a high degree of
being influenced by their neighbors compared to those with
a low value for this metric.

Action Influenceability. We define the influence quotient
for an action to distinguish between actions for which there
is more evidence of influence propagation from the rest of
the actions. More precisely, we define:

infl(a) =
|{u | ∃v, ∆t : prop(a, v, u, ∆t) ∧ 0 ≤ ∆t ≤ τv,u}}|

number of users performing a
(5)

We expect that for actions with high infl(a), predictions
(based on influence models) of user performing those ac-
tions will yield a relatively higher precision and recall values
compared to other actions. We will revisit this in the exper-
imental section.

5. MODELS
Recall from the previous section that we assume the prob-

abilities of influence by individual neighbors of a user are
independent. Thus, if we have a model for capturing indi-
vidual influences, we can compute the joint influence using
Eq. 1. Next, we propose 3 types of models to capture pv,u,
the probability with which u is influenced by its neighbor v.
The first class of models assumes the influence probabilities
are static and do not change with time. The second class of
models assumes they are continuous functions of time. As a
preview, it will turn out continuous time models are by far
the most accurate, but they are very expensive to test on
large data sets. Thus, we propose an approximation known
as Discrete Time Models where the joint influence proba-
bilities can be computed incrementally and thus efficiently.
In all the models we propose, we also discuss how to learn
estimates of various parameters from the training data set.

5.1 Static Models
These models are independent of time and are the sim-

plest to learn and test. We present three instances of static
models.

Bernoulli distribution. Under this model, any time a
contagious user v tries to influence its inactive neighbor u, it
has a fixed probability of making u activate. If u activates,
it is a successful attempt. Each attempt, which is associated
with some action, can be viewed as a Bernoulli trial. The
Maximum Likehood Estimator (MLE) of success probability
is the ratio of number of successful attempts over the total
number of trials. Hence, influence probability of v on u using
MLE is estimated as:

pv,u =
Av2u

Av
(6)
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Figure 1: Frequency of common actions Vs. the time difference between two users performing actions. (a)
during the first hour at a granularity of 10 minutes; (b) during the first week at hourly granularity (without
considering the cases in which the time difference is less than one hour, i.e., the cases in (a)); (c) the rest of
the dataset with weekly granularity

Jaccard Index. The Jaccard index is often used to measure
similarity between sample sets, and is defined as the size of
the intersection divided by the size of the union of the sample
sets. We adapt the Jaccard index to estimate pv,u as follows:

pv,u =
Av2u

Au|v

(7)

Partial Credits (PC). When a user u in a network is
influenced to perform an action, it may be influenced by
the combination of its neighbors who have performed the
action before. Thus, it is reasonable to infer that each of
these predecessors shares the “credit” for influencing u to
perform that action. Suppose user u performs an action a
at time tu(a) and S its set of activated neighbors such that
∀v ∈ S, T (v, u) ≤ tv(a) < tu(a). Let |S| = d. Then, in the
partial credits model, we give each of u’s neighbors an equal
credit 1/d for making u perform the action. In general, the
credit given to user v ∈ S who performed an action a before
u can be defined as:

creditv,u(a) =
1

X

w∈S

I(tw(a) < tu(a))
(8)

where I is an indicator function.
The notion of partial credit is orthogonal to whether we

use Bernoulli or Jaccard as the base model. Thus, we have
two additional models. In the Bernoulli model with partial
credit, the influence probability is estimated as follows:

pv,u =

X

a∈A

creditv,u(a)

Av
(9)

where A is the set of actions in the training data. In the
Jaccard model with partial credit, the influence probability
is estimated as follows:

pv,u =

X

a

creditv,u(a)

Au|v

(10)

In case of static models, the joint influence probability pu(S)
as defined in equation 1 can be computed incrementally as
stated in Theorem 1.

5.2 Continuous Time (CT) Models
In reality, influence probability may not remain constant

independently of time. It is natural to expect that when

a user first comes to see/hear of its neighbor(s) performing
an action, it may feel the urge to explore it and that, with
time, this urge (i.e., influence) may decay. To understand
whether this is true in practice, we computed the number of
actions that propagated between pairs of neighbors in Flickr
and plotted it against the time that elapsed between them:
see Figure 1. The figure shows the behavior at three levels of
granularity – weeks, hours, and intervals of 10 minutes. In
all cases, the data consistently shows an exponential decay
behavior, confirming our intuition above.

Accordingly, we define pt
v,u, the probability of v influenc-

ing its neighbor u at time t, as follows.

pt
v,u = p0

v,ue−(t−tv)/τv,u (11)

where p0
v,u is the maximum strength of v influencing u. In

the exponential decay model, the maximum strength is re-
alized right after v performing the action, i.e., when t = tv.
This maximum strength, p0

v,u, can be estimated in exactly
the same was as for the static models. Thus, we can have
four variations of the continuous time model corresponding
to the four static models discussed earlier. We omit the
obvious detail. The parameter τv,u is called the mean life
time. It corresponds to the expected time delay between
v performing an action and u performing the same action.
Once pt

v,u is defined, we can derive the joint probability of
influence, pt

u(S), of u being influenced at time t by the com-
bination of its active neighbors, can be derived exactly as
for static models. More precisely, we have:

pt
u(S) = 1 −

Y

v∈S

(1 − pt
v,u) (12)

The parameter τv,u can be estimated as the average time
delay in propagating an action from v to its neighbor u in
the training set. Formally, it is defined as in equation 4.

In this class of continuous time models, the joint influence
probability pt

u(S) changes as each time step as it is a con-
tinuous function of time. As a new neighbor activates and
becomes contagious, there may be a sharp increase in pt

u(.)
and then it starts decreasing again with time. Hence, the
function pt

u(.) is a piecewise continuous function. Since the
probability pt

v,u changes at each time step, the joint influ-
ence probability cannot be computed incrementally. Every
time a new neighbor activates, we have to compute it from
scratch. If the size of set S is d, then there would be at most
d local maxima for the function. If max

t
{pt

u(.)} ≥ θu, the

activation threshold of u, we conclude that u activates.



In addition to predicting the activation state of an user,
this class of models enables us to predict time at which the
user is most likely to perform the action. The details appear
in Section 6.3.

5.3 Discrete Time (DT) Models
As noted above, Continuous Time Models are not incre-

mental in nature, hence they are very expensive in terms
of run time required for testing. Therefore, in this section,
we propose an approximation to Continuous Time Models,
called Discrete Time Models. Here, we say that the influence
of an active user v on its neighbor u remains constant at pv,u

for a time window of τv,u after v performs the action. After
that it drops to 0, i.e. a user v is contagious for u in the time
interval [tv, tv + τv,u]. It allows us to use the incrementality
property established in Theorem 1. Here, the definition of
S needs to be modified such that it contains only contagious
neighbors of u. Hence, when a contagious neighbor w be-
comes non-contagious, we need to update pu(S) and it can
be incrementally updated as follows.

pu(S \ w) =
pu(S) − pw,u

1 − pw,u
(13)

Analogous to Static Models, there can be 4 variations of
Discrete Time models depending on how the constant in-
fluence probability pv,u is estimated, i.e., using Bernoulli,
Jaccard, or their particl credit variants. For brevity, we
only give the equation for partial credits here as other cases
are easier.

The Partial Credit definition (8) for discrete time should
be modified as

credit
τv,u
v,u (a) =

1
X

w∈S

I(0 < tu(a) − tw(a) ≤ τv,u)
(14)

where I is the indicator function. The new influence proba-
bility pv,u can be computed as stated in equations 9 and 10
with the new definition of credit. As we show in the experi-
ments section, these models provide an efficient yet effective
approximation for Continuous Time Models.

6. ALGORITHMS
In this section, we present algorithms for learning the pa-

rameters of the various models proposed in the previous sec-
tion, as well as algorithms for testing the learned models.
One of the key aspects we pay attention to is efficiency of
not just the training algorithms (which learn the parame-
ters) but also that of the testing algorithms which apply the
models on the test data and make predictions. As mentioned
before, any model that enjoys the incremental property af-
fords an efficient testing algorithm.

The input to these algorithms consists of a social graph
together with an action log. We assume the action log is
sorted on action-ids and tuples on an action are chronolog-
ically ordered. This allows the algorithms to process the
data one action at a time. In practice, action log tends to
be huge (from tens to hundreds of millions of tuples) so we
optimize our algorithms to minimize the number of scans
over the action log.

6.1 Learning the Models
As in any machine learning approach, the first step is to

learn the parameters of a model. We note that our algo-

Figure 2: (a) Undirected social graph containing 3
nodes and 3 edges with timestamps when the so-
cial tie was created; (b) Action Log; (c) Propaga-
tion Graph for action a1 (d) Propagation Graph for
action a2 (e) Propagation Graph for action a3 (f)
Influence Matrix.

rithms are able to learn all the models simultaneously in no
more than two scans of the (training sub-set of the) action
log table. Furthermore, to learn parameters for static and
continuous time Models, the algorithm needs only one scan
of the actions log. The overview is presented in Algorithm
1. To illustrate our algorithms, we will use a running ex-
ample shown in Figure 2. Recall, action log is sorted on
action-ids and then by time. The algorithm maintains the
tuples for the current action a in a tree-based data structure
current table indexed on user-ids. As it reads a new tuple
of the form (u, a, tu) saying user u performs the action a at
time tu, we look into the current table for those neighbors
v of u, such that the link between u and v has been estab-
lished before either of them performs a. Etv represents the
set of edges in the social graph at time tv. It is worth noting
that we don’t need to assume social ties are never broken, as
long as we can efficiently find Etv . Since the data is sorted
in chronological order, tv ≤ tu.

Algorithm 1 Learning - Phase1

1: for each action a in training set do

2: current table = φ
3: for each user tuple < u, a, tu > in chronological order do

4: increment Au

5: parents = φ
6: for each user v : (v, a, tv) ∈ current table && (v, u) ∈

Etv do

7: if tu > tv then

8: increment Av2u

9: update τv,u

10: insert v in parents
11: increment Av&u

12: for each parent v ∈ parents do

13: update creditv,u

14: add (u, a, tu) to current table

Lines 1-6 of the algorithm are self-explanatory. The con-
dition in line 7 ensures that we avoid the cases when the two
users perform a at the same time as then it is questionable



whether propagation actually happened. Next, for all the
interesting neighbors from which the action propagated, we
update the required counts/parameters (lines 8-11).

As an example, Figure 2(a) shows a social graph contain-
ing three users P , Q and R with three edges among them.
The edges are labeled with timestamps at which the two
users became friends. The action log containing 3 actions
a1, a2 and a3 is presented in Figure 2(b). Using the social
graph and action log, the propagation graphs for actions a1,
a2 and a3 are shown in Figure 2(c), (d) and (e). Edges are
directed in Propagation Graphs and labeled with time taken
to propagate the action. Note that even though both Q and
R perform a1, PG(a1) doesn’t contain the edge from Q to
R because when Q performed a1 at time 10, R was not in its
neighborhood. They became friends at time 11. Define the
influence matrix of a model to be an (n×n) matrix IM , with
IM [i, j] = (pi,j , τi,j) or IM [i, j] = (p0

i,j , τi,j), depending on
whether it’s a discrete or continuous time model. Figure 2(f)
shows the influence matrix containing parameters learnt for
Continuous Time Model with Bernoulli as the base model
for computing p0

i,j . For instance, the entry IM [P, Q] shows

that p0
P,Q is 1/3 and τP,Q is 5.

For learning partial credits, we maintain the tree-based
data structure parents containing the contagious neighbors
from which the action has been propagated. Next, the algo-
rithm goes through the parents list again and updates the
partial credits as defined in Eq. 8 (lines 12-13). Finally, the
tuple (u, a, tu) from the action log is added to current table
(line 14). Notice that static models and continuous time
models are learned in one scan.

To learn infl(u), τ (learned from first scan) is needed
and this requires a second scan of the action log. Similarly,
learning parameters of discrete time models also requires τ
beforehand. The second phase of the learning algorithm is
described in Algorithm 2. The algorithm is very similar to
Algorithm 1 except in Step 6 we require that tu − tv ≤ τv,u.
Notice that infl(u) is updated whenever we find at least one
neighbor from which u is influenced.

Algorithm 2 Learning - Phase2

1: for each action a in training set do

2: current table = φ
3: for each user tuple < u, a, tu > in chronological order do

4: parents = φ
5: for each user v : (v, a, tv) ∈ current table && (v, u) ∈

Etv do

6: if 0 < tu − tv < τv,u then

7: increment Av2u

8: insert v in parents
9: for each parent v ∈ parents do

10: update credit
τv,u
v,u

11: if parents != φ then

12: update infl(u)
13: add (u, a, tu) in current table

6.2 Evaluating the Models
An overview of the evaluation algorithm for Static Models

is given in Algorithm 3. We assume the same sort order for
the action log as for the training algorithms. We maintain a
results table with entries of the form < u, pu, performu > as
we scan the action log, where the flag performu represents
whether the user u has actually performed the action in
question or not: its value is 0 if u never performs the action
but at least one of its neighbors does, is 1 if u performs it

Figure 3: (a) Action Log; (b) Propagation Graph for
action a4 (c) pR(.) w.r.t time for Continuous Time
Model with Bernoulli.

and at least one of its neighbors performs it before it, and
is 2 if u is the initiator of the action in its neighborhood.
pu represents the probability of the user u performing the
action given its neighbors who have already performed the
action. At any instant, the results table contains all the
activated users for the current action and their neighbors.

As we scan the actions log and read a new tuple of the
form < v, a, tv >, we add v and all its neighbors to the
results table with the appropriate influence probability and
performv flag. It may be possible that v is already present
in the table because one or more of its neighbors are already
active. In that case, we just update the performv flag to 1
(lines 4-5). If it is not present in the table, then that means
it is the initiator of the current action in its neighborhood,
hence the performv flag should be set to 2 (lines 6-7). Sim-
ilarly, some of its neighbors may already be present in the
table and in that case, we update the influence probability of
v over them incrementally (lines 8-10). At the end of read-
ing all tuples for an action, the results table contains all the
users who are active or are neighbors of one or more active
users.

We depict the performance of our models using ROC curves,
which plot the true positive rate (TPR = TP/(TP+FN))
against the false positive rate (FPR = FP/(FP+TN)), where
TP represents true positives, FN represents false negatives
etc. The appropriateness of ROC curves over precision recall
curves for binary classification has been recognized [12]. The
closer the hump of the curve to the point (0, 1) the better
the performance. In our problem setting, we ignore all the
cases when none of the user’s friends is active, as then the
model is inapplicable. Hence, we define TP as cases when
user performs the action, at least one of its neighbors per-
forms the action before it and model estimates it performs
the action. FP is the number of cases when user doesn’t per-
form the action, at least one of its neighbors performs action
and model estimates it performs the action. Similarly, TN is
the number of cases when user doesn’t perform the action,
and at least one of its neighbors performs the action and the
model estimates it doesn’t perform the action. Finally, FN
is the number of cases when the user performs the action, at
least one of its neighbors performs the action before it and
the model estimates it doesn’t perform the action.

After processing all the tuples for an action, the algorithm
scan the results table to update TP, FN, FP and TN (lines
13-17). It is straightforward to adapt this algorithm to eval-
uate Discrete Time Models. We omit the details here due
to the lack of space.

In case of continuous time models, testing becomes com-
plex. Algorithm 4 provides an overview. Here, we store in
the results table the time tu at which user u performs the
action a. Once the results table is formed for an action (in
lines 2-10), the algorithm iterates over all the entries in it.



Algorithm 3 Evaluate-Basic

1: for each action a in test set do

2: results table = φ
3: for each user tuple < v, a, tv > in chronological order do

4: if v ∈ results table then

5: set performv flag to 1
6: else

7: add v to results table with pv=0 and performv=2
8: for each user u : (v, u) ∈ Etv do

9: if u ∈ results table then

10: update pu incrementally as in Theorem 1
11: else

12: add u to results table with appropriate pu and
performu=0

13: for each entry < u, pu, performu > in results table do

14: if (performu == 1 && pu ≥ θu) it is TP
15: if (performu == 1 && pu < θu) it is FN
16: if (performu == 0 && pu ≥ θu) it is FP
17: if (performu == 0 && pu < θu) it is TN

For each entry 〈u, pu, performu, tu〉, it collects all the rel-
evant neighbors and keeps them in chronological order in
sorted parents table (lines 11-14). Next, the algorithm tries
to find the global maximum of joint influence probability
of u performing the action w.r.t time. Whenever a new
neighbor performs the action, the joint influence probability
increases sharply and then starts decreasing again until an-
other neighbor gets activated. So, if there are d neighbors
who perform a, then the joint probability distribution would
have (up to) d local maxima. To find the global maximum,
we have to analyze all the local maxima (lines 15-18). If
it is more than the threshold θu, then we conclude that u
activates. The required metrics: TP, FN, FP and TN are
updated accordingly (lines 19-23).

Algorithm 4 Evaluate-Complex

1: for each action a in test set do

2: results table = φ
3: for each user tuple < u, a, tu > in chronological order do

4: if u ∈ results table then

5: set performu flag to 1
6: else

7: add u to results table with pu=0 and performu=2
8: for each user v : (v, u) ∈ Etu do

9: if v /∈ results table then

10: add v in results table with pv=0 and performv=0
11: sorted parents = φ
12: for each entry < u, pu, performu, tu > in results table do

13: for each user v : performv ! = 0, (v, u) ∈ Etv do

14: add v to sorted parents
15: for each neighbor vi ∈ sorted parents list do

16: compute pu(tvi
) at time tvi

considering neighbors
from v1 to vi

17: if pu(tvi
) > pu then

18: update pu

19: for each entry < u, pu, performu, tu > in results table do

20: if (performu == 1 && pu ≥ θu) it is TP
21: if (performu == 1 && pu < θu) it is FN
22: if (performu == 0 && pu ≥ θu) it is FP
23: if (performu == 0 && pu < θu) it is TN

As an example, consider the social graph and influence
probabilities in Figure 2. Let us assume there is an action
a4 in test set whose action log is given in Figure 3(a). The
corresponding propagation graph is shown in Figure 3(b).
Finally, the probability of R performing the action w.r.t. is
plotted in 3(c).

6.3 Predicting Time
Time conscious models like CT and DT enable us not

only to predict whether a user performs a particular action
or not, but also to predict the time interval [b, e] in which
she is most likely to do it. We next explain how.

Whenever a new neighbor activates, there is a sharp in-
crease in the joint influence probability which makes it a
piecewise continuous function. We assume that user u is
most likely to get activated in the first region where pt

u(.) ≥
θu. In other terms, we take the first local maximum of the
joint probability function which is not less than θu. We say
the user has now entered into the contagious interval and
can activate anytime. We label this time t as the left-bound
of the interval b. For the right-bound e, we add to b the
half life period4 of the influence of v over u, or more specif-
ically, τv,u ∗ ln(2), where v is the neighbor of u by virtue of
which u entered the contagious zone. Intuitively, by time
τv,u ∗ ln(2), half the actions that are propagated from w to
u have indeed been picked up by u. Thus, we predict that
given an action a that did propagate from v to u, by the half
life period after v performs a, u would have performed a.

Since it would be complex to asses prediction accuracy
w.r.t. an interval [b, e] we decide for our experiments to pre-
dict an exact point in time. In viral marketing applications,
tightness of lower bound is not critical, as in case the user
performs the action early, it does not hurt. Hence, we decide
to perform our experiments on the upper bound e.

7. EXPERIMENTAL EVALUATION
Dataset preparation. In our problem setting, we need
both the social network and the actions log. We consider
Flickr social network and we consider “joining a group” as
the action5. We started with 6,2 millions users having 71
millions edges. We projected this graph on the subset of
users who is a member of at least one group. This gave us
1,450,347 users with 40,562,923 edges among them.

This social graph has 34,766 connected components where
the largest connected component consist of 1,319,573 users
with 40,450,082 edges (99.72%). Rest of the components
have less than 75 users, so we ignore them. Total number
of tuples in action log after the filtering are 35,967,169. As
in any machine learning approach, we split the dataset into
a training and a test set. In our experiments, we split the
dataset based on actions such that each action can appear
completely either in training or test dataset.

Qualitative Evaluation. We compare the different models
by means of ROC curves. Each point in ROC curve corre-
sponds to one possible value of activation threshold θu which
is same for all users. Figure 4 compares the four Static Mod-
els introduced in Section 5.1. Similarly, Figure 5 examines
the 4 variants of Discrete Time (DT) models (Section 5.3).
These figures show that Bernoulli is slightly better than Jac-
card model and among two Bernoulli variants, Partial Credit
wins by a small margin. In the rest of the section, we only
use Bernoulli model to compare different classes of models.

Figure 6 shows the comparisons between the three differ-
ent classes of models. It verifies the claim that time con-
scious models work far better than Static Models. Among
time conscious models, CT and DT perform equally well.

4http://en.wikipedia.org/wiki/Half-life
5http://www.flickr.com/groups
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Figure 7: CT Bernoulli model: ROC curves for dif-
ferent slices of users influenceability (a) and actions
influenceability (b).

Figure 7 reports the ROC curves for different slices of
users influenceability (a) and actions influenceability (b).
The plots confirm the intuition that larger influenceability
leads to an easier prediction of influence.
Predicting Time. While for DT models it is inexpen-
sive to compute both lower and upper bounds of the con-
tagious time interval, we found the upper bound computed
is not tight. Hence, we conclude that while DT models are
good in predicting the activation state of the users w.r.t.
actions, they are not capable of predicting the time range in
which the user is most likely to perform the action. There-
fore in the following we focus on CT models (in particular
Bernoulli).

In figures 8, 9 and 10, we show the power of CT models
to predict the time by which users are likely to perform
actions. The model attempts to predict the upper bound on
time only when the user is active and prediction of activation
state is correct, i.e. the TP cases. Figure 8 shows the root
mean square error (RMSE) in days against the accuracy
of predicting upper bound. Accuracy of time prediction is
defined as the ratio between the number of cases when the
prediction of upper bound by the model is correct, over the
total number of cases it examines. In this plot we removed
the 2.5% outliers both from the negative and positive side.
The RMSE value revolves around 70-80 days. If we try to
increase accuracy beyond 85%, RMSE increases sharply. In
the subsequent figures, we choose an operating point for CT
model corresponding to 82.5% TPR and 17.5% FPR. This
is chosen as the intersection point of the ROC curve and
diagonal line from [1,0] to [0,1]. At this point, Accuracy is
73% and RMSE is 75 days. In figure 9, X-axis is the error in
predicting time and Y-axis is the number of times the CT
model makes that error. It clearly shows that most of the
time, the error in prediction is very small. Finally, Figure 10
shows the coverage of CT model. Here, a point (x, y) means
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Figure 11: (a) training runtime. (b) Testing runtime
comparison of all 3 classes of models.

that for y% of cases, the error is within ±x. In particular,
for 95% cases, the error is within 20 weeks.

Scalability evaluation. Figure 11 (a) and (b) shows the
scalability of our algorithms. In the training phase, the run-
time is a linear function of number of the tuples read. Mem-
ory usage (not reported in the figure) remains constant and
independent of the number of tuples read, both in train-
ing and testing phases. Since Static and DT models are
incremental in nature, they are far more efficient than CT
models for testing. In conclusion, DT models achieves the
same quality as CT models but much more efficiently.

8. CONCLUSIONS AND DISCUSSION
Previous works about influence propagation in social net-

works typically assume the social graph which is input to
the problem has its edges labeled with probabilities of in-
fluence. In this paper we studied how to learn such proba-
bilities form a log of past propagations. We proposed both
static and time-dependent models for capturing influence,
presented algorithms for learning the parameters of the var-
ious models and for testing the models. Our algorithms are
optimized to minimize the scans over the action log, a key
input to the problem of inferring probabilities of influence.
This is significant since the action log tends to be huge.
We ran an extensive set of experiments to test our learn-
ing algorithms. One of the highlights is that in addition to
predicting whether a user will perform an action, we also ob-
served that the predictions of our algorithms on users with
a high influenceability score tend to have a high precision.
In addition, we are able to predict, to within tight margins,
the time by which an influenced user will perform an action
after its neighbors have performed the action. In addition
to demonstrating these aspects, our experiments also show
that while testing the proposed continuous time model is
very expensive, the discrete time model can be tested much
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more efficiently and yet can yield accuracy levels very close
to that of the continuous time model.

Several challenges remain. While this work was motivated
by the assumptions of viral marketing, it’s interesting to con-
sider the impact of this work in the reverse direction. For
instance, viral marketing works essentially ignore the effect
of time and assume edges have constant influence probabil-
ities as labels. It is important to formulate and solve viral
marketing taking into account the time varying nature of
influence. Similarly, factoring in user influenceability and
action influence quotient is important. Indeed, a user with
low influenceability might “attenuate” some of the incom-
ing influence from neighbors. The same user may be more
influenced by neighbors on actions with high influence quo-
tient than on other actions. Accounting for these phenom-
ena in viral marketing is an interesting direction for future
work. Last but not the least, learning optimal user activa-
tion thresholds would be an interesting future work.
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