
STRIP: Stream Learning of Influence Probabilities

Konstantin Kutzkov1 Albert Bifet2 Francesco Bonchi2 Aristides Gionis3

1IT University of Copenhagen 2Yahoo! Research 3Aalto University and HIIT
Copenhagen, Denmark Barcelona, Spain Espoo, Finland

konk@itu.dk {abifet,bonchi}@yahoo-inc.com aristides.gionis@aalto.fi

ABSTRACT
Influence-driven diffusion of information is a fundamental
process in social networks. Learning the latent variables of
such process, i.e., the influence strength along each link, is a
central question towards understanding the structure and
function of complex networks, modeling information cas-
cades, and developing applications such as viral marketing.

Motivated by modern microblogging platforms, such as
twitter, in this paper we study the problem of learning
influence probabilities in a data-stream scenario, in which
the network topology is relatively stable and the challenge
of a learning algorithm is to keep up with a continuous
stream of tweets using a small amount of time and mem-
ory. Our contribution is a number of randomized approx-
imation algorithms, categorized according to the available
space (superlinear, linear, and sublinear in the number of
nodes n) and according to different models (landmark and
sliding window). Among several results, we show that we
can learn influence probabilities with one pass over the data,
using O(n logn) space, in both the landmark model and the
sliding-window model, and we further show that our algo-
rithm is within a logarithmic factor of optimal.

For truly large graphs, when one needs to operate with
sublinear space, we show that we can still learn influence
probabilities in one pass, assuming that we restrict our at-
tention to the most active users.

Our thorough experimental evaluation on large social
graph demonstrates that the empirical performance of our
algorithms agrees with that predicted by the theory.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications
- Data Mining

Keywords
Social network analysis, Social Influence, Streaming, Ran-
domized approximation algorithms.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD’13, August 11–14, 2013, Chicago, Illinois, USA.
Copyright 20XX ACM 978-1-4503-2174-7/13/08 ...$15.00.

1. INTRODUCTION
Data from social networks and social media is generated

continuously, creating streams that many applications need
to process in real-time. Analysis of these social streams
in real-time predicates the need for fast learning methods,
which use a small amount of memory, and are capable of
adapting to changes in the data distribution of the social
network.

Diffusion of information drive by social influence is a fun-
damental process in social networks. Modeling and inferring
latent information-influence variables is a central question
towards understanding the structure and function of com-
plex networks. Accordingly, a lot of research has been de-
voted in studying models of information diffusion and devel-
oping methods to learn their parameters. On the other hand,
many of the proposed methods employ computationally-
intensive techniques, such as EM-type schemes or approxi-
mation algorithms, which assume that one can operate with
random access on the whole data, or can make many passes
over the data. Obviously, such techniques are not suitable
for nowadays applications that require processing and min-
ing of large-scale data in continuous streams.

In this paper we propose STRIP, a suite of streaming
methods for computing the influence strength along each link
of a social network, that is, we learn the probability that
each user influences each of his or her social contacts, friends,
followers, etc. As a conceptual framework to compute the
influence probabilities of the network edges, we are adopting
the frequentist definition of Goyal et al. [13]. The brute-force
computation of influence probabilities under this framework
requires space that is proportional to the overall activity in
the network, e.g., all the “tweets” that all users have posted.

We show how to efficiently estimate influence probabilities
using much less space, and with one pass over the activity
log. In particular, we express the space requirements of our
algorithms as a function of the number of nodes in the net-
work (n). This should be contrasted with other quantities
in the network, such as the total number of edges (m), or
the total number of actions performed at the network nodes.
One should note that in modern social-microblogging appli-
cations, such as twitter, not only the number of users is
expected to be much less than the size of the activity log,
but also the set of users is much more stable while the ac-
tions performed by the users are continuous, rapid, and time-
varying data streams. It is also worth noting that we aim
at approximating a set of m probability values, one for each
network edge, while expecting to keep a constant amount
of memory for each network node. This is achieved by the

sketching nature of the STRIP framework: our algorithms
maintain a constant-size sketch for each network node, and
the influence probability of an edge (u, v) can be estimated
directly by the sketches of the nodes u and v.

In addition to the algorithms we develop, we also present
a number of theoretical results concerning the lower bounds
for the required space complexity. In particular we study
the landmark model, where the influence probabilities are
computed with respect to the whole activity history of each
user, and the sliding-window model, which are appropriate
for forgetting data items that are not relevant, and thus
adapting better to the behavioral changes occurring in the
network.

Paper contributions and roadmap. The paper is orga-
nized in three main technical sections corresponding to the
three memory settings: superlinear in the number of nodes n
(Section 4), linear (Section 5), and sublinear (Section 6).
Sections 4 and 5 are further divided in subsections present-
ing the STRIP methods based on the landmark model and
the sliding-window model.

Our contributions are summarized as follows:

• Under the assumption that the whole social graph can
be kept in memory, we present an algorithm for the
landmark model (Section 4.1). For user-defined pa-
rameters ε, δ > 0, the algorithm provides an (ε, δ)-
approximation of the influence probability for all edges
such that the quality of the estimates does not depend
on the influence probability. Adjusting in a suitable
way the exponential histogram technique, we extend
the algorithm to estimate influence probabilities over
time-based sliding windows (Section 4.2).

• For the setting where we are not able to keep the so-
cial graph in main memory we prove a lower bound
showing that one cannot obtain an arbitrarily good
approximation using sublinear memory for all edges,
formalizing the intuition that it is difficult to estimate
the influence probabilities among less active users in a
streaming setting (Section 5.1). Then we present an
algorithm whose space complexity is within a logarith-
mic factor of the lower bound building upon the Min-
wise sampling approach (Section 5.2). We extend the
algorithm to the sliding window model (Section 5.3).

• For truly large graphs, when one needs to operate with
sublinear space, we need to restrict our estimation of
influence probabilities only to active users. More pre-
cisely, motivated by observations on real data, we as-
sume that user activity adheres to Zipfian distribution
with parameter z, i.e., assuming users are sorted in de-
creasing order according to their activity, for a stream
of s actions in total the ith user performs s

ζ(z)iz
ac-

tions. We give an algorithm estimating the diffusion
probabilities among the most active b = o(n) users for
the landmark model and sketch how it can be extended
to the the sliding window model in Section 6.

We present some background and related work in Section 2.
In Section 3 we give some preliminaries. We perform and
discuss an empirical validation of the new methods proposed
in Section 7, and finally Section 8 concludes the paper.

To the best of our knowledge this is the first work on
learning influence probabilities from data streams.

2. BACKGROUND AND RELATED WORK
Stream learning. Data streams are large read-once se-
quences of data that change with time. Actions of users
in social networks are an example of data streams. Data
streams are usually so large that any exact computation is
prohibitive in terms of memory and time. Thus stream
learning methods are becoming popular since they allow
real-time analytics on evolving data, under restrictions of
time and memory. These methods usually rely on approxi-
mate algorithms that can obtain large gains in memory and
time complexity, giving away little accuracy, by using sketch
structures [6, 1], or applying sampling techniques, or a com-
bination of both.

Learning influence probabilities. Detecting and esti-
mating social influence strength among the users of social
networks, is becoming a hot research topic in the computa-
tional social science as well as in the marketing literature.
The amount of interest that this computational problem is
attracting is justified by the great business potentialities of
applications such as viral marketing, for which estimating
influence strength is a needed preliminary step.

Given a social network, whose nodes are users and arcs
represent social relations among the users, we can asso-
ciate each arc (u, v) with a probability puv representing the
strength of influence exerted by u on v. Or in other terms,
the probability that a tweet posted by u will be “retweeted”
by v. In this setting, a basic computational problem is that
of selecting the set of users to be targeted by the viral mar-
keting campaign: those are the users more likely to generate
a large viral cascade. The first algorithmic treatment of the
problem was provided by Domingos and Richardson [10].
Later, Kempe et al. [16] introduced influence maximization
as a discrete optimization problem: given a budget k, find
the set of k nodes that maximizes the expected number of
active nodes at the end of the process. The activation of
nodes is governed by a probabilistic propagation model. For
instance, in the Independent Cascade propagation model,
when a node u first becomes active, say at time t, it has one
chance of influencing each inactive neighbor v with probabil-
ity puv. If the tentative succeeds, v becomes active at time
t + 1. Following this seminal work [16], considerable effort
has been devoted to develop methods for improving the ef-
ficiency of influence maximization [18, 7, 14]. The majority
of this literature assumes the input social graph has already
the influence probabilities associated to links, and does not
address how to compute them.

Saito et al. [21] were the first to study the problem of learn-
ing the probabilities for the independent cascade model from
a set of past observations, formalizing it as likelihood max-
imization and applying Expectation Maximization (EM) to
solve it. However, the iterative nature of EM methods is re-
ally not suited for stream processing. In this paper we adopt
instead the simpler frequentist definition of Goyal et al. [13].
The learning procedure defined in [13] assumes that the in-
put propagation data is stable and sorted by the item and
then by time. Of course the real stream of events does not
come sorted by any criteria except time, so that the propa-
gations corresponding to different items arrive intertwined.
The learning algorithm needs two scans of this fixed and
sorted database. Moreover, it keeps in memory the whole
propagation of an item, plus one counter for each node and
a couple of counters for each link.

3. PRELIMINARIES
We consider a social network, represented as a directed

graph G = (V,E) with users corresponding to vertices and
edges to social connections, such that the edge (u, v) denotes
that v follows u. The maximum in-degree of a vertex in G
is denoted by ∆. Let A be a set of actions. The input is
provided as stream S of triples (u, a, tu). Each triple denotes
that user u performed action a ∈ A at time tu. The number
of actions in S is denoted as s. An action a propagates within
τ time units from user u to user v if (u, v) ∈ E, and a is
performed by u and then by v within τ time units, i.e., there
exist triples (u, a, tu), (v, a, tv) ∈ S with 0 < tv− tu ≤ τ . We
are interested how influential is a given user u, i.e., how
probable is that actions propagate from user u to a user v.

We consider two standard streaming models: In the land-
mark model one is interested in the whole history of the
stream starting from a given time point to the present. Let
Au denote the set of actions performed by user u. We also
define Aτu2v to be the set of actions propagated from u to v
within τ time units, and Au|v the set of actions performed by
either u or v. We set max(A, τ) to be the maximum number
of actions that can be performed by a user within τ time
units. To estimate the influence probability puv between
the users u and v, we use the so-called Jaccard model, pro-

posed by Goyal et al. [13], and define puv =
s(Aτu2v)

s(Au|v)
, where,

hereinafter, s(A) denotes the size of a set A. In time-based
sliding windows only the most recent actions are considered
for a user-defined time threshold. Denote the window by W
and the set of actions performed within the window by AW .
The notation for the actions performed by a user within the
window W extends in the obvious way the notation for the
landmark model. We set w = arg maxu∈V s(A

W
u).

Note that if we are able to keep in main memory the whole
stream, we can easily compute the influence probabilities
defined above. However, for high-frequency streams of very
large volume this is not possible and we thus need to de-
velop stream-processing algorithms computing approximate
estimates of the influence probabilities. Naturally, our solu-
tion extends techniques developed for streaming algorithms.
We review the relevant background below.

Probabilistic approximation. We say that an algorithm
returns an (ε, δ)-approximation of some quantity q, if it re-
turns a value q̃, such that (1 − ε)q ≤ q̃ ≤ (1 + ε)q, with
probability at least 1− δ for any 0 < ε, δ < 1.

Min-wise independent functions. A family F of func-
tions from U to Z is k-wise independent if for f : U → Z
chosen uniformly at random from F

Pr[f(u1) = c1 ∧ f(u2) = c2 ∧ · · · ∧ f(uk) = ck] = z−k,

for z = s(Z), distinct ui ∈ U and any ci ∈ Z and k ∈ N.
A family H of functions from U to a finite totally ordered

set S is called (α, k)-min-wise independent if for any X ⊆ U
and Y ⊆ X, with |Y | = k and 0 < α < 1, for a function h
chosen uniformly at random from H it holds

Pr[max
y∈Y
{h(y)} < min

z∈X\Y
{h(z)}] = (1± α)

1(|X|
k

) .
We use the notation h : U → [0, 1] to denote that h maps

U to a finite subset D of [0, 1]. For h being pairwise in-
dependent and |D| = |U |3, the probability of collision, i.e.,
h(u1) = h(u2) for u1, u2 ∈ U , u1 6= u2, is at most 1/|U |.
We thus assume that h : U → [0, 1] is injective with high

probability and h(u) can be described using O(log |U |) bits.
For the analysis of our algorithms we will use the following

Fact 1. Let c1, c2, c3, c4 be constants larger than 1. For
any 0 < ε < 1 there exists an ε′ = Θ(ε) such that

(1 + c1ε
′)c2

(1− c3ε′)c4
≤ 1 + ε, and

(1− c1ε′)c2
(1 + c3ε′)c4

≥ 1− ε.

Min-wise independent hashing. Min-wise independent
permutations [4, 8] is a powerful technique for estimating

the Jaccard similarity J(A,B) = s(A∩B)
s(A∪B)

between two sets

A and B, subsets of a ground set U . In particular, let π
be a random permutation of the elements in U . Define
π(A) = minx∈A{π(x)}, the smallest element of A under the
permutation π, and π(B) similarly. It is easy to see that
Pr[π(A) = π(B)] = J(A,B), namely, the indicator variable
that the smallest elements in π(A) and π(B) are identical
yields an unbiased estimator of the Jaccard similarity.

The approach can be generalized to estimating the frac-

tion s(Ω(A∪B))
s(A∪B)

for any efficiently computable predicate Ω on

the elements in A∪B. For instance, for a random permuta-
tion π, we can obtain an unbiased estimator of the influence
probability puv by keeping track of au = arg minx∈Au{π(x)}
and av = arg minx∈Av{π(x)}, and then checking whether
au = av and av has been performed within τ time units
of au. By the estimator theorem [19], with O(1

ε2puv
log 1

δ
)

independent estimators one obtains an (ε, δ)-approximation
of puv. The applicability of the approach on a streaming
setting, follows from the fact that, as shown by Broder et
al. [4], the random permutations can be replaced by effi-
ciently computable hash functions h : A→ [0, 1].

A modification of the approach stores the k smallest hash
values instead of a single hash value and returns as an es-

timate s(Ω(Mink(A∪B)))
k

, where Mink(A ∪ B) are the actions
in A ∪ B with the k smallest hash values. By choosing Ω
to be the function that returns the number of propagated
actions in the sample, one can show that for k = O(1

pε2
)

and an (α, k)-independent hash function, for some constant
α < 1/2, the scheme yields an (1 ± ε)-approximation for
edges with influence probability at least p with probability
more than 1/2. Standard application of Chernoff bounds
yields that the median of O(log 1

δ
) independent estimators

is an (ε, δ)-approximation.
The latter scheme is more suitable for our purposes. Addi-

tionally, a recent improvement of the approach exponentially
reduced the evaluation time of an (α, k)-independent hash
function from O(k) to O(log2 k) [12]. For the theoretical
analysis of our algorithms we use the following

Fact 2. Let Ak be the set of size-k subsets of A and let
more than 2/3 of these satisfy a certain property ρ. Let
X ∈ Ak be a set satisfying ρ. Then there exists a constant
α < 1/2 such that an (α, k)-independent hash function h
maps the elements of X to the k smallest hash values with
probability more than 1/2. The function h can be described
in O(k) machine words and evaluated in time O(log2 k).

Sliding-time windows. Datar et al. [9] presented an al-
gorithm for estimating the number of 1’s in a stream of bits
over time-based sliding windows. The algorithm relies on
a data structure based on exponential histograms. We ad-
just the approach such that we can apply min-wise indepen-
dent hashing over sliding windows. As a result we can keep

track of the minimum element, according to a random per-
mutation π, in the sliding window. In the analysis of our
algorithms we will use the following

Fact 3. Let W be a time-based window and w be the
number of actions performed within W . Keeping an expo-
nential histogram with O(logw/(ε)) buckets for each user,
one can compute the minimum hash value of at least (1−ε)w
of the actions in W .

4. SUPERLINEAR SPACE
In this section we assume that the whole graph fits in

memory and for each user we can store all actions performed
within τ time units. We present algorithms for the landmark
and the sliding-window model. The algorithms provide an
(ε, δ)-approximation for the influence probability puv of all
(u, v) ∈ E, and the complexity does not depend on puv.

4.1 Landmark model
The superlinear-space landmark-model algorithm, shown

as Algorithm 1, works as follows. For each user u we keep a
data structure Qu recording the performed actions together
with a hash table Hu recording the time each action in Qu
has been performed. For each directed edge (u, v) we keep a
counter c(Au2v) recording the number of actions propagated
from u to v within time τ , respectively. For each user u we
keep a sketch MinHashu of the actions. The sketches of the
users u and v will be used to estimate s(Au|v) [1]. For a pair-
wise independent hash function h : A→ [0, 1] the sketch for
user u consists of the k smallest hash values of the actions
performed by u. For each incoming triple (u, a, tu) we up-
date Qu and Hu by first deleting all actions performed more
than τ time units ago and adding the pair (a, tu). Then
we evaluate the hash value of the action performed and up-
date MinHashu, i.e., we add h(a) to u’s sketch if it is smaller
than the largest value or there are less than k hash values
in the sketch. Next we check which of u’s neighbors have
already performed a within time τ and increment c(Au2v).
At the end we estimate s(Au|v) as proposed in [1] by re-
turning k/hk, where hk is the k-th smallest hash value in
MinHashu ∪ MinHashv.

Theorem 1. Let G = (V,E) be a connected graph over
n vertices and m edges, and S be a stream of s actions.
There exists an algorithm computing an (ε, δ)-approximation
of the influence probability of all edges in expected amortized
time O(s(∆ + log n

δ
) + m

ε2
) and space O(m+n(max{A, τ}+

1
ε2

log n
δ

)) in only one pass over S.

Proof. For a user u we keep a queue Qu recording the
performed actions together with the corresponding time as
well as a hash table Hu containing the actions. For each user
we also maintain the k actions with the smallest hash values
seen so far. Clearly, Qu and Hu consists of O(max{A, τ})
pairs since we maintain the invariant that the first and last
action in Q are preformed within τ time units. Also each
pair is added and deleted exactly once to a given Qu and Hu,
thus each incoming action is processed in expected constant
amortized time. We observe that storing the incident edges
for each user u in a hash table, we can access the neighbors
of a user u in expected time bounded by O(∆).

Update maintains the k smallest hash values of actions
performed by each user. One can use a priority queue, this

Algorithm 1: STRIP - Superlinear Memory

ProceedStream
Input: Social graph G = (V,E), stream S of s actions,

threshold τ , int k, pairwise independent
h : A→ (0, 1]

Load G in memory.
for (u, a, t) ∈ S do

Qu.enqueue(a, t).
Hu.add(a, t)
Update(MinHashu, h(a), k)
while Qu is not empty do

(au, tu)← Qu.last()
if |tu − t| > τ then

Qu.remove()
Hu.remove(a, t))

else
break;

for (v, u) ∈ E do
if Hv.contains(a, tv) and tu − tv ≤ τ then

c(Av2u)++

EstimateUnionSize
Input: vertex u, vertex v, int k
MinHash← MinHashu ∪ MinHashv
hk ← the k-th smallest value in MinHash

return k/hk

EstimateInfluenceProbabilities
Input: Social graph G = (V,E)
for (v, u) ∈ E do

s̃(Av|u)←EstimateUnionSize(u, v, k)
return c(Av2u)/s̃(Av|u)

however incurs an additional log k-factor for the running
time. Instead, for each user u we maintain the k-th smallest
hash value hkmin. Then for an incoming triple (u, a, t) we
check whether h(a) < hkmin and if so, we store h(a) in a aux-
iliary data structure MinHashaux

u . Once there are k values in
MinHashaux

u , we find the median in MinHashu ∪ MinHashaux
u

and update MinHashu to contain the k minimum hash values.
The median can be found in O(k) time by a deterministic al-
gorithm [2], thus we update MinHashu in constant amortized
time. Looking-up in a hash table takes expected constant
time. For each edge (u, v) Estimate(u, v) computes hkuv,
the k-th smallest hash value in MinHash(u) ∪ MinHash(v).
As shown by Bar-Yossef et al. [1], for k = O(1

ε2
) the value

1/hkuv is an (1 ± ε)-approximation of s(Au|v) with proba-
bility at least 2/3. Thus the median of log m

δ
= O(log n

δ
)

such estimators is an (ε, δ
n

)-approximation of puv and by the
union bound we have an (ε, δ)-approximation of the number
of performed actions for all edges. The (ε, δ)-approximation
of the influence probabilities then follows from Fact 1.

4.2 Sliding window model
A straightforward extension of Algorithm 1 for the sliding

window model is to combine it with the exponential his-
togram approach using t = O(1

ε
) buckets. In each bucket

we will keep the k smallest hash values and at the end, us-
ing Fact 3, we will be guaranteed to have the k smallest
hash values for at least (1− 2ε) of the actions performed by
each user. However, we can make use of the fact that hash

values are random and thus it is very improbable that the
k smallest actions will come all from the same bucket. We
formalize this intuition in the next theorem and show that
for a sufficiently random hash function it suffices to store
only the smallest O(1

ε
log 1

ε
) hash values per bucket.

Theorem 2. Let G = (V,E) be a connected graph over
n vertices and m edges, S be a stream of s actions and
W a time-based sliding window. There exists an algorithm
computing an (ε, δ)-approximation of the influence proba-
bility of all edges over a time-based sliding window in ex-
pected amortized time O(s(∆ + log n

δ
log 1

ε
) + m

ε2
) and space

O(m logw 1
ε

+n(max{A, τ}+ 1
ε2

log2(1
ε
) logw log n

δ
)) in only

one pass over S.

Proof. We use a bit-counter over sliding windows to es-
timate s(AWu2v). In order to estimate s(AWu|v) we extend
the exponential histogram approach as follows. Consider
a given user u and assume that s/he performs w actions
within the window. We maintain t = 1

ε
buckets of width 2i

for 0 ≤ i ≤ log w
2t

, each keeping track of 2i ≤ εw/2 actions.

Let k = O(1
ε2

). Since h maps the w actions uniformly
at random to values in [0, 1], we expect k hash values to
be at most k/w. By Markov’s inequality the probabil-
ity that the k-th smallest value is larger than 3k/w is at
most 1/3. Next we bound the number of small hash val-
ues in a given bucket. For a bucket recording at most εw
actions we expect 3kε = O(1

ε
) hash values in the bucket

to be smaller than 3k/w. For a fully random hash func-
tion, by Chernoff bounds the probability that the number
of hash values smaller than 3k/w is more that O(kε log t) is
1/(8t). Thus, for uniformly distributed hash values in [0, 1],
a fraction of 1/(8t) of the size-x subsets of the actions in
a given bucket, for x = O(kε log t) = O(1

ε
log 1

ε
), will con-

stitute of actions with hash values all smaller than 3k/w.
Thus, by Fact 2, there exists constant α < 1/2 such that
an (α, x)-independent hash function guarantees with proba-
bility 1/(6t) that the hash values for at most x actions in a
given bucket are smaller than 3k/w. By the union bound we
find the k smallest hash values for the buckets of given width
with probability at least 5/6, thus the total space to com-
pute the smallest O(1

ε2
) hash values is O(1

ε2
log2(1

ε
) logw).

Each action is processed in amortized time O(log 1
ε
).

From Fact 3 it follows that we might not have a record for
εw of the actions in AWu and AWv . In the worst case we thus
have not considered 2εs(AWu|v) different actions and we com-

pute an (1±ε)-approximation of the quantity (1−2ε)s(AWu|v)
with probability at least 2/3. Since the bit-counter for
s(AWu2v) computes an (1 ± ε)-approximation of the number
of actions propagated from u to v, by Fact 1 it follows that
by rescaling ε, i.e., ε := ε/c, for some constant c > 0, we
have an (1± ε)-approximation of the influence probabilities
for an edge (u, v) with probability at least 2/3. Thus, the
success probability for detecting the k smallest hash val-
ues and obtaining an (1 ± ε)-approximation from them is
(5/6) · (2/3) > 1/2. Taking the median of O(log n

δ
) esti-

mates yields the claimed result.

5. LINEAR SPACE
We now move to the more interesting case, presenting

algorithms that require space linear in the number of ver-
tices. Our algorithms are appropriate for dense networks,
and when we assume that there is O(n) available space but

not O(m), the so-called semi-streaming model [11]. From
the empirical point-of-view it is known that social networks
become denser over time [17] and it is conjectured that
m = Ω(n1+ε) for some constant ε > 0. Also, it is feasible to
keep the number of actions for each user performed within τ
time units only for relatively small τ . If one is interested in
learning the probabilities over longer time intervals, one has
to store a considerable fraction of the stream in memory.

5.1 Lower bound
Before providing our algorithms, we discuss that linear

space in the number of nodes is necessary if one wants to
learn the influence probabilities on all edges with certain
accuracy. Intuitively, we need to store some information
about each vertex in the social graph because the influence
probability on a given edge (u, v) can be high even if the
number of actions performed by u and v is very small.

The proof of the next theorem can be found in the Ap-
pendix. It uses a simple reduction from the Bit-Vector
Disjointness problem for binary vectors over n bits which is
known to have communication complexity of Ω(n) bits [15].
Note that the result holds for randomized algorithms even
if they are allowed to make a constant number of passes on
the data stream.

Theorem 3. Let G = (V,E) be a connected graph over
n vertices and m edges, and S be the action stream. Con-
sider any randomized streaming algorithm A that makes a
constant number of passes over E and S. Assume that A
distinguishes with probability more than 1/2 the following
two cases (1) all edges have influence probability at most
1/(d− 1), for any d ≥ 3, vs. (2) there is an edge with influ-
ence probability 1/2. Then A needs Ω(n) bits in expectation.

5.2 Landmark model
Algorithm 2 is based on min-wise independent sampling.

We assume h : A → [0, 1] is t-wise independent, for t that
will be specified later. For each user u we keep a sample
MinHashu of the k actions with the smallest hash values per-
formed by him/her together with the time-stamp the action
was performed. For each incoming action (u, a, t) we eval-
uate h(a) and update MinHashu to contain the k actions
with smallest hash values. After processing the stream, for
a given edge (u, v) we determine the (at most) k actions
with the smallest hash values in MinHashu ∪ MinHashv and
in Prop(MinHashku|v, τ) we count how many of them propa-
gated from u to v within τ time units.

Theorem 4. Let G = (V,E) be a connected graph over
n vertices and m edges, and S be a stream of s actions.
There exists an algorithm returning an (ε, δ)-approximation
of the influence probability puv of all arcs (u, v) with puv ≥
p in amortized time O((s log2(1

εp
) + m

ε2p
) log n

δ
) and space

O(n
ε2p

log n
δ

) in one pass over S.

Proof. Assume that h is t-wise independent, for t to be
specified later. Consider an edge (u, v) ∈ E. We are in-
terested in those sets MinHashku|v of k elements containing
(1± ε)puvk actions that propagated from u to v. The num-
ber of such sets follows hypergeometric distribution. We
expect puvk actions in MinHashku|v to have propagated from
u to v. With some algebra we bound the variance of the
random variable counting the number of propagated actions
in MinHashku|v. By Chebyshev’s inequality it follows that for

k = O(1
ε2p

) at most 1/3-rd of the k-size subsets will not

yield a (1 ± ε)-approximation of puv. From Fact 2 there
exists a constant α < 1/2 such that for h being (α, k)-
independent, with probability at least 2/3 the k smallest
hash values correspond to a set of size k which provides an
(1±ε)-approximation. A standard application of Chernoff’s
inequality and the union bound yields that the median of
O(log n

δ
) estimates will be an (ε, δ)-approximation for all

(u, v) with puv ≥ p.
The sets MinHashu for each user can be stored in an in-

dexed array allowing constant time access. We maintain the
k smallest hash values in a priority queue and update it for
each newly performed action. We need h to be t-wise inde-
pendent for t = O(1

ε2p
) and by [12] h can be represented in

space O(1
ε2p

) and evaluated in time O(log2 1
εp

).

Algorithm 2: STRIP - Linear Memory

Compute Samples
Input: stream S of actions, threshold τ , a parameter k,

t-wise independent hash function h : A→ [0, 1]
for (u, a, t) ∈ S do

MinHashu.update((h(a), t), k).

Single Estimate
Input: users u, v, a set of samples MinHashz for all

users z
Let MinHashku|v be the k entries with the smallest hash
value in MinHashu ∪ MinHashv

return
Prop(MinHashku|v,τ)

k

5.3 Sliding window model
We extend the previous algorithm to estimate the influ-

ence probabilities over sliding windows. The main idea is
to guarantee that the required O(1

ε2p
) smallest hash values

of actions performed within the window are kept with con-
stant error probability. We achieve this by adjusting the
exponential-histogram technique.

Theorem 5. Let G = (V,E) be a connected graph over
n vertices and m edges, S be a stream of s actions and
W a time-based sliding window of at most w actions.
There is an algorithm returning an (ε, δ)-approximation of
the influence probability pWuv of all edges with pWuv ≥ p
in amortized time O((s log2(1

εp
) + m

ε2p
) log n

δ
) and space

O(n
ε2p

log2(1
εp

) logw log n
δ

) in one pass over S.

Proof. Assume for each i we maintain t buckets of width
2i, 0 ≤ i ≤ log w

2t
for t ≥ 1

ε
. Similarly to the proof of

Theorem 2, we can show that storing O(1
pε

log 1
εp

) values
per bucket, we can compute with constant error probability
p1 < 1/4 the required smallest k = O(1

ε2p
) hash values.

The construction of exponential histograms implies that in
the last bucket, i.e., the bucket keeping track of the oldest
actions, we might have recorded k hash values of actions
not performed within the window. Consider a directed edge
(u, v) and assume the worst case that we have no record of
w/(2t) actions performed by u within the window and all
of them have propagated from u to v. This happens when
either for u or w we have not recorded hash values of actions

Algorithm 3: STRIP - Sublinear Memory

ComputeSamplesInBuckets
Input: stream S of actions performed by users, int k,

pairwise independent hash function g : V → [`],
r-wise independent hash function h : A→ [0, 1]

for (u, a, t) ∈ S do
q = g(u)
MinHashq.update((u, h(a), t), k).

Single Estimate
Input: users u, v, threshold τ , a set of samples

{MinHashq}, q ∈ [`]
bu = g(u), bv = g(v)
if |{(u, h(a), tu) ∈ MinHashbu}| ≥ k/2 and
|{(v, h(a), tv) ∈ MinHashbv}| ≥ k/2 then

Let MinHashku and MinHashkv be the k triples with
the smallest hash values for actions performed by u
and v, respectively

Let MinHashku|v be the k entries with the smallest
hash value in MinHashu ∪ MinHashv

return
Prop(MinHashku|v,τ)

k

performed within the window and propagating from u to
v. Therefore, as shown in Theorem 4 we can obtain with
error probability less than 1/2 an (1 ± ε)-approximation of

the quantity
s(Awu2v)−w/(2t)

s(Au|v)
for k = O(1

ε2p
). This yields an

additive approximation of εpuv − w
ks(Au|v)

. From s(Au|v) ≤
2w and puv ≥ p we obtain that for t ≥ 1

pε
we will have an

(1 ± ε)-multiplicative approximation with error probability
p2 < 1/4. Similar reasoning applies to the case when we
have no record of w/(2t) actions performed by u and no of
them propagated to v.

Thus, with error probability less than 1/2 we have an
(1±ε)-approximation of the influence probability for a given
arc. Running O(log n

δ
) copies in parallel and taking for each

edge the median of the estimates, the approximation holds
for all arcs with probability at least 1− δ.

6. SUBLINEAR SPACE
For the landmark model we combine the algorithm from

Section 5.2 with hashing based algorithms for mining heavy
hitters in data streams, e.g., [6]. The main idea in these
algorithms is to distribute the heavy items to different bins
by a suitably defined hash function. Then one shows that
the contribution from non-heavy items in each bin is not
significant and one can obtain high quality estimates for the
heaviest items. In Algorithm 3 we apply the approach to
active users but instead of estimating the activity, we are
interested in obtaining a sample of the actions performed by
active users. By recording the actions with the smallest hash
values in each bin, we will show that with high probability
a large fraction of those will be for actions performed by an
active user.

Theorem 6. Let G = (V,E) be a connected graph over
n vertices and m edges, and S be a stream of s actions. Let
the user activity follow Zipfian distribution with parameter z
and let (u1, u2, . . . , un) be the users sorted according to their

activity. There exists a one-pass streaming algorithm com-
puting an (ε, δ)-approximation of the influence probabilities
of all edges (ui, uj) with puiuj ≥ p for i, j ≤ b in time T and
space S such that:

• if z < 1, then S = O(n
1−zbz

ε2p
log b

δ
) and T =

O((s log 1
εp

+ m
ε2p

) log b
δ
).

• if z > 1, then S = O(b
ε2p

log b
δ
) and T = O((s log 1

εp
+

m
ε2p

) log b
δ
).

We can extend the algorithm to handle the sliding window
model under the assumption that the user activity within the
window adheres to Zipfian distribution. We adjust the expo-
nential histograms approach such that each bucket records
a certain number of bins recording the smallest hash values.
As in the previous sections, this incurs an additional cost of
polylog(1

εp
, w) to the space complexity of the algorithm.

7. EXPERIMENTAL EVALUATION
The goal of our experiments is twofold. First, to show that

the proposed approach is indeed applicable to learning influ-
ence probabilities in real social networks and yields results
that confirm the theoretical analysis. Second, to compare
the algorithms for the different memory models. Note that
we did not try to optimize the space usage since it heav-
ily depends on low-level technical details. For example, in
our Java implementation we worked with data structures
provided by the java.util package. However, a hash table
then automatically wraps primitive data types as objects,
which considerably increases the space usage. While such
details can greatly influence the performance, they are be-
yond the scope of the present work.

Details on the implementation. We used tabulation
hashing [5] to implement the hash function. (See, e.g., [20]
for details.) The approach is very efficient and each hash
function can be stored in fast cache and evaluated in con-
stant time. The scheme yields only 3-wise independence but
recently Chernoff-like concentration on the estimates pro-
vided by algorithms using tabulation hashing with a single
hash function were shown [20]. Therefore, we worked with
only one hash function instead of taking the median of sev-
eral estimates provided by different functions.

Experimental settings. The algorithms were imple-
mented in Java and experiments performed on a Windows
7 machine with 3.30 GHz clocked processor and 4 GB
RAM. We experiment on two real-world datasets. For both
datasets we extend the available stream of events, by creat-
ing synthetic data in a smart way: the synthetic stream is
generated by an instance of the Independent Cascade model
that fits the available real data, as explained next.

The first dataset is obtained by crawling the public time-
line of Twitter and tracking the propagation of hashtags
across the network. The second dataset has been crawled
from Flixster 1, one of the main web communities which
allows to share ratings on movies and to meet other users
with similar tastes. The propagation log records the time at
which a user rated a given movie. An item propagates from
v to u, if u rates the item shortly after the rating by v. The
datasets basic statistics are reported in Table 1.

The user activity is quite skewed: the maximum num-
ber of actions performed by a user in Twitter is 358 and in
1
http://www.cs.sfu.ca/sja25/personal/datasets/

|V | E ∆ actions
Twitter 26,488 1,636,462 6,883 580,141
Flixster 29,357 425,228 585 6,529,008

Table 1: Characteristics of the real-world datasets.

Flixster 11,542; in Twitter the 1,000 most active users per-
form 68,191 actions, and in Flixster the skew is even more
significant with 1,000 users performing 1,643,686 actions.

From the real datasets we create a larger stream of actions
as follows. For a suitably chosen propagation threshold τ we
compute the influence probabilities among edges and also
compute the “starting” probability for each user to initiate a
given action, i.e., how probable is that a given user performs
an action without being influenced by its neighbors. Then
we sequentially create new items. For a given new item,
from the starting probabilities for each user we toss a biased
coin and decide whether the user will perform the action.
If performed, the action is then propagated to its neighbors
according to the precomputed influence probability within
time r, where r is a random number in (0, τ]. The average
influence probability in Twitter is 0.0099 and the number of
edges with influence probability at least 0.05 is 92,813. The
numbers for Flixster are 0.0202 and 51,963, respectively.

For 100,000 items propagated through the Twitter net-
work we obtain a stream of about 36 million actions. For
the Flixster network we propagate 1,000,000 items obtain-
ing a stream of about 27 million actions. The synthetic
datasets exhibit similar characteristics to the original data
with skewed activity among users and, not surprisingly, sim-
ilar distribution of the influence probabilities.

For a directed edge (u, v), we denote the approximation
of the influence probability puv by p̃uv. We evaluate the
quality of the estimates of all edges (u, v) s.t. puv ≥ 0.05
with respect to average relative error, Pearson correlation
coefficient and Spearman rank correlation [3].

Evaluation. Table 3 shows the quality of the estimates for
varying number of samples. As expected, the best estimates
are obtained for Algorithm 1, the superlinear space model,
since the number of propagations for any (u, v) is computed
exactly and we only estimate the number of different actions
performed by u or v. The left-most plot in Figure 1 confirms
that the quality of the approximation does not depend on
the influence probability. Due to the sparsity of the graph
structure of the two considered networks, the space com-
plexity of Algorithm 1 is comparable to the space-usage by
Algorithm 2. However, the running time is more than an
order of magnitude larger and this is due to the fact that
for each incoming triple (u, a, tu) we explicitly need to check
whether v has performed a within τ time units of tu for all
arcs (v, u). Instead, in Algorithm 2 each incoming triple
is processed in constant amortized time. The exact num-
bers are in Table 2, where the space is the number of stored
samples and the time is given in seconds. For the sublinear
model we estimated the influence probabilities among the
1,000 most active users and worked with 3,000 bins. For a
given number of samples x we then stored in each bin the 3x
smallest hash values of users hashed to the bin. The plots in
Figure 1 confirm that despite of working with a single hash
function there are no outliers in the estimates.

In Tables 4 and 5 we evaluated the quality of estimates
for time-based sliding windows. We choose a time thresh-
old for the window such that the number of actions in the
windows is approximately 10% and 20% of the stream, re-
spectively. In order to obtain the smallest k hash values

Superlinear memory Linear memory Sublinear memory

Samples Space Time Space Time Space Time

T
w
it
te
r

100 1,538,993 1401.27 1,639,720 44,45 893,344 39,48
150 2,342,512 1389.76 2,338,055 42,97 1,337,046 41,05
200 3,081,681 1387.96 3,005,698 45,17 1,777,084 43,52
250 3,639,120 1393.65 3,646,400 47,73 2,222,563 44,79
300 4,212,704 1395.02 4,261,574 51,32 2,641,752 45,69
350 4,799,429 1393.86 4,854,004 54,05 3,089,974 47,65
400 5,478,576 1397.03 5,425,154 55,86 3,514,610 50,36
450 5,925,660 1396.58 5,977,632 56,17 3,950,878 52,18
500 6,498,569 1397.16 6,514,259 56,44 4,405,461 54,38

F
li
xs
te
r

100 2,031,217 137.58 1,993,107 29.63 897,042 28.73
150 2,652,329 138.37 2,732,788 28,79 1,343,034 30.03
200 3,357,899 137.05 3,400,342 30,07 1,779,307 31,24
250 4,020,016 138.18 4,013,011 32,36 2,220,812 34,12
300 4,701,442 138.59 4,583,334 33,66 2,650,249 35.51
350 5,098,353 139.06 5,118,537 34,45 3,085,930 38,62
400 5,559,797 138.98 5,625,570 35,03 3,505,002 39,22
450 6,092,310 139.78 6,107,170 36,72 3,926,346 39,95
500 6,519,207 140.02 6,565,227 38,42 4,339,582 41,11

Table 2: Complexty of the algorithms. The running time is given in seconds and the space is the number of samples stored
in memory.

Superlinear memory Linear memory Sublinear memory

Samples Avg Error Pearson Spearman Avg Error Pearson Spearman Avg Error Pearson Spearman

T
w
it
te
r

100 0.0573 0.9908 0.9931 0.2682 0.8495 0.8251 0.2327 0.5675 0.546
150 0.0502 0.9915 0.9939 0.2178 0.8919 0.8727 0.1887 0.6584 0.6261
200 0.0461 0.9922 0.9948 0.1881 0.9155 0.9022 0.1644 0.7024 0.6727
250 0.0402 0.9937 0.9960 0.1678 0.9295 0.9175 0.1474 0.7374 0.7112
300 0.0372 0.9951 0.9964 0.1519 0.9422 0.9304 0.1355 0.7571 0.7286
350 0.0301 0.9969 0.9971 0.1405 0.9492 0.9408 0.1232 0.7900 0.7615
400 0.0283 0.9973 0.9982 0.1304 0.9552 0.9472 0.1158 0.8043 0.7745
450 0.0226 0.9974 0.9989 0.1226 0.9607 0.9529 0.1068 0.8318 0.8031
500 0.0243 0.9991 0.9994 0.1160 0.9639 0.9583 0.1016 0.8465 0.8229

F
li
xs
te
r

100 0.0637 0.9612 0.9813 0.2761 0.6913 0.8316 0.3215 0.7554 0.6154
150 0.0585 0.9699 0.9852 0.2242 0.7511 0.8795 0.268 0.8202 0.6792
200 0.0493 0.9761 0.9888 0.1891 0.7906 0.9076 0.223 0.867 0.7437
250 0.0413 0.9807 0.9911 0.1669 0.8215 0.9238 0.2055 0.877 0.7539
300 0.0364 0.9851 0.9942 0.1499 0.8382 0.9366 0.1866 0.898 0.7851
350 0.0320 0.9866 0.9950 0.1369 0.8581 0.9448 0.1723 0.9115 0.801
400 0.0291 0.9889 0.9958 0.1278 0.8706 0.9529 0.1625 0.9204 0.8198
450 0.0275 0.9901 0.9965 0.1184 0.8817 0.9584 0.1494 0.9261 0.8321
500 0.0264 0.9922 0.9971 0.1109 0.8904 0.9625 0.1482 0.9297 0.8361

Table 3: Quality of the estimates for the landmark model for various number of samples.

Superlinear memory Linear memory Sublinear memory
Samples Avg Error Pearson Spearman Avg Error Pearson Spearman Avg Error Pearson Spearman

T
w
it
te
r

50 0.0685 0.9951 0.9967 0.252 0.8345 0.8151 0.266 0.4099 0.4289
100 0.0432 0.9961 0.9571 0.2082 0.879 0.8621 0.1841 0.5056 0.5476
150 0.0374 0.9983 0.9986 0.1793 0.9189 0.904 0.1539 0.6045 0.6461
200 0.0335 0.9969 0.9986 0.1582 0.9286 0.9165 0.1323 0.6747 0.7112
250 0.0257 0.9973 0.9985 0.1423 0.9412 0.9304 0.1373 0.6511 0.703
300 0.0329 0.9993 0.9992 0.1349 0.9492 0.938 0.1315 0.7571 0.7286

F
li
xs
te
r

50 0.1281 0.9036 0.9617 0.2481 0.7563 0.782 0.4532 0.5305 0.6517
100 0.0555 0.97 0.9897 0.202 0.7812 0.8362 0.335 0.6221 0.7506
150 0.0439 0.9791 0.993 0.1901 0.8206 0.8512 0.267 0.6868 0.828
200 0.0357 0.9861 0.9956 0.162 0.8611 0.8894 0.2211 0.7521 0.8737
250 0.0304 0.989 0.9965 0.1519 0.8821 0.9005 0.201 0.7765 0.8897
300 0.0285 0.9902 0.9969 0.1465 0.9152 0.9246 0.1762 0.7983 0.912

Table 4: Quality of estimates for a sliding window of length approximately 10% of the stream.

Superlinear memory Linear memory Sublinear memory

Samples Avg Error Pearson Spearman Avg Error Pearson Spearman Avg Error Pearson Spearman

T
w
it
te
r

50 0.1612 0.9565 0.9675 0.2609 0.8364 0.8562 0.2603 0.4952 0.4785
100 0.1282 0.9861 0.9841 0.2345 0.875 0.891 0.1931 0.5562 0.5748
150 0.0434 0.9883 0.9944 0.1766 0.9104 0.9248 0.1475 0.6674 0.695
200 0.0305 0.9959 0.9968 0.1491 0.9212 0.9324 0.1278 0.6989 0.7353
250 0.038 0.9976 0.9978 0.1385 0.9432 0.9514 0.1113 0.7514 0.7855
300 0.0195 0.9973 0.9985 0.1215 0.9502 0.9667 0.1017 0.7834 0.8127

F
li
xs
te
r

50 0.1033 0.9034 0.9722 0.2434 0.7292 0.8735 0.4514 0.5366 0.6696
100 0.0528 0.9569 0.9906 0.1931 0.8183 0.8975 0.3229 0.6416 0.7761
150 0.0325 0.9751 0.9953 0.1602 0.8243 0.9362 0.2595 0.7097 0.8346
200 0.0291 0.9806 0.9962 0.1469 0.8508 0.9538 0.2266 0.7469 0.8623
250 0.0268 0.9837 0.9971 0.122 0.8777 0.9606 0.206 0.76 0.8853
300 0.0175 0.9911 0.9985 0.1009 0.893 0.9648 0.182 0.7894 0.922

Table 5: Quality of estimates for a sliding window of length approximately 20% of the stream.

0 1 2 3 4 5 6 7 8 9

x 10
4

10
−2

10
−1

10
0

Edges

In
flu

en
ce

 p
ro

ba
bi

lit
y

Approximation
Exact

Figure 1: Visualization of the estimates for the Twitter dataset for the three memory models.

overall, we observed that tabulation hashing’s randomness
allows us to store only the smallest O(k log k/t) hash values
in each of the t buckets of given width. The processing of
the stream was stopped at a random point and we evalu-
ated the quality of the estimates. Due to lack of space we
do not include the exact time and space complexities but
we observe that for the smaller window the space-savings
are small, using between 50% and 85% of the total window
size for a varying number of samples. For the larger window,
better space savings were observed using between 35% and
70% of the window size, clearly indicating that our approach
is advantageous to storing the whole window only for larger
windows. For the sublinear space model we concentrated
only on the 500 top users and even for the smaller window
were able to achieve relatively good space savings, varying
between 18% and 40% of the window.

In a summary, we see reasonably good estimates on the
influence probabilities by storing just a few hundreds hash
values. For larger streams the advantages of the approach
become more significant. Also, while the superlinear mem-
ory algorithm yields better estimates, this comes at the price
of a much worse processing time. For denser social networks
this drawback will be even more pronounced.

8. CONCLUSION AND FUTURE WORK
Microblogging platforms as twitter are becoming large

real-time generators of social data-streams. In this paper, we
presented STRIP, a suite of streaming methods for comput-
ing the influence strength along each link of a social network.
To the best of our knowledge, these are the first streaming
methods that compute influence probabilities. The STRIP
methods builds upon a wise use of probabilistic approxima-
tions, min-wise independent hashing functions, and stream-
ing sliding windows. These methods works in several sce-
narios, depending on the available memory and whether we
are interested in the whole history of the stream or only in
more recently performed actions.

In our future investigation, we plan to extend the present
work in two directions. First, we plan to use adaptive size
windows, so that the data analyst does not need to decide
a priori what is the optimal window. Second, we plan to
implement the STRIP suite of methods using distributed
stream systems, to be able to process social data-streams in
a distributed fashion.

Acknowledgements. This work done while the first au-
thor was visiting Yahoo! Research, Barcelona and supported
by the Danish National Research Council under the Sapere
Aude program. We would like to thank Rasmus Pagh for
valuable suggestions about the analysis of the algorithm.

9. REFERENCES
[1] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and

L. Trevisan. Counting distinct elements in a data stream.
In RANDOM’02.

[2] M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and
R. E. Tarjan. Time bounds for selection. J. Comput. Syst.
Sci., 7(4):448–461, 1973.

[3] C. Brase and C. Brase. Understandable Statistics:
Concepts and Methods. Brooks/Cole, 2011.

[4] A. Z. Broder, M. Charikar, A. M. Frieze, and
M. Mitzenmacher. Min-wise independent permutations. J.
Comput. Syst. Sci., 60(3):630–659, 2000.

[5] L. Carter and M. N. Wegman. Universal classes of hash
functions. J. Comput. Syst. Sci., 18(2):143–154, 1979.

[6] M. Charikar, K. Chen, and M. Farach-Colton. Finding
frequent items in data streams. Theor. Comput. Sci.,
312(1):3–15, 2004.

[7] W. Chen, C. Wang, and Y. Wang. Scalable influence
maximization for prevalent viral marketing in large-scale
social networks. In KDD’10.

[8] E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk,
R. Motwani, J. D. Ullman, and C. Yang. Finding
interesting associations without support pruning. IEEE
Trans. Knowl. Data Eng., 13(1):64–78, 2001.

[9] M. Datar, A. Gionis, P. Indyk, and R. Motwani.
Maintaining stream statistics over sliding windows. SIAM
J. Comput., 31(6):1794–1813, 2002.

[10] P. Domingos and M. Richardson. Mining the network value
of customers. In KDD’01.

[11] J. Feigenbaum, S. Kannan, A. McGregor, and J. Zhang.
On graph problems in a semi-streaming model. In ICALP,
2004.

[12] G. Feigenblat, E. Porat, and A. Shiftan. Exponential time
improvement for min-wise based algorithms. Inf. Comput.,
209(4):737–747, 2011.

[13] A. Goyal, F. Bonchi, and L. V. S. Lakshmanan. Learning
influence probabilities in social networks. In WSDM’10.

[14] A. Goyal, F. Bonchi, and L. V. S. Lakshmanan. A
data-based approach to social influence maximization.
PVLDB, 5(1):73–84, 2011.

[15] B. Kalyanasundaram and G. Schnitger. The probabilistic
communication complexity of set intersection. SIAM J.
Discrete Math., 5(4):545–557, 1992.

[16] D. Kempe, J. M. Kleinberg, and É. Tardos. Maximizing the
spread of influence through a social network. In KDD’03.

[17] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over
time: densification laws, shrinking diameters and possible
explanations. In KDD’05.

[18] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos,
J. VanBriesen, and N. S. Glance. Cost-effective outbreak
detection in networks. In KDD’07.

[19] R. Motwani and P. Raghavan. Randomized Algorithms.
CRC Press, 1997.

[20] M. Pǎtraşcu and M. Thorup. The power of simple
tabulation hashing. J. ACM, 59(3):14, 2012.

[21] K. Saito, R. Nakano, and M. Kimura. Prediction of
information diffusion probabilities for independent cascade
model. In KES’08.

10. APPENDIX
Proof. (of Theorem 3) We reduce the Bit-Vector Dis-

jointness problem to detecting edges with high influence
probability in streamed graphs. Bit-Vector Disjoint-
ness is the following problem. There are two bit strings
A,B ∈ {0, 1}n indexed from 1 to n. Alice holds A, Bob
holds B and they want to decide whether there exists an
1 ≤ i ≤ n such that the ith bit is set to 1 in both A and
B. Alice and Bob want to communicate to each other a
minimum number of bits. Any randomized protocol for the
problem achieving error probability of less than 1/2 needs
Ω(n) bits [15].

The reduction is as follows. (We refer to Figure 2 for an
example.) Let V = {v1, . . . , vn} be a set of vertices which
will correspond to the bit position in A and B. Further, let
ZA = {zAj } and ZB = {zBj }, 1 ≤ j ≤ d − 1, be two sets of
of d− 1 vertices each. We first read Alice’s string bit by bit
and if the ith bit is set to 0 we create d − 1 edges (vi, z

A
j).

Otherwise, if A[i] = 1 we create the edge (vi, o
A
i) for a vertex

oi not contained in ZA ∪ZB . The same is then repeated for
the bits in B with the difference that for 0-bits we add the
edges {vi, zBj } and for 1-bits – the edge (vi, o

B
j). At the end

we connect vi and vi+1 for 1 ≤ i ≤ n− 1.
We then let each vi perform 2(d−1) different actions. Let

c = |{u ∈ N(vi), u /∈ V }|, i.e., the number vi’s neighbors
not contained in V . Assuming a partial order on vi’s neigh-
bors, we propagate the ith action to the neighbor in position
i mod c.

We see that if there exists an i such that in A and B the
ith bit is set to 1, then there exists an edge, namely (vi, o

A
i)

and (vi, o
B
i), with a influence probability of 1/2. On the

other hand, if at most one of the ith bits in A and B is set
to 1, then ui performs 2(d − 1) actions and most 2 actions
are propagated to any of its neighbors.

The above construction is deterministic, therefore we can
feed an algorithm for detecting edges with high influence
probability with the same input more than once. The
lower bound on the communication complexity of random-
ized algorithms for the Bit-Vector-Disjointness problem
is Ω(n) bits.

Note that the number of edges in the constructed graph is of
the order O(dn), and for constant d the lower bound of Ω(n)
for Bit-Vector Disjointness implies also a lower bound of
Ω(m) bits for learning influence probabilities in a streaming
setting. This however does not rule out the existence of an
algorithm with space complexity o(m) for a given m but
implies that we cannot obtain an o(m)-space algorithm for
sparse instances, which is the case for other problems.

Proof. (of Theorem 6) Let the number of bins be ` ≥ 8b.
Consider a given active user ui, i ∈ [b], and assume g(ui) =
q, i.e., g hashes ui to some bin q ∈ [`]. In the following we
will abuse notation and denote by g(ui) the bin ui is hashed
to by g.

Since g is pairwise independent, for each other active user
uj it holds Pr[g(uj) = q] = 1

8b
. Thus, by Markov’s inequality

with probability at most 1/8 there is another active user
hashed to the same bin as ui.

Let w =
∑n
i=b+1

s
ζ(z)iz

, i.e., the total weight of user activ-

ity of non-active users. We expect w
8b

actions by non-active
users to be hashed to g(ui). We analyze the required num-
ber ` of bins in order to guarantee that with probability at

v1 v2 v3 v4 v5

oA1 oA2 oB2 oA4 oB5

ZA ZB

Figure 2: An example of the construction for proving the
lower bound for bit-vectors consisting of 6 bits. The edges
(v2, o

A
2) and (v2, o

B
2) have each influence probability 1/2 and

all other edges have influence probability at most 1/5.

least 3/4 non-active users with a total number of actions not
more than s

2ζ(z)bz
will land in g(ui).

• For z < 1 we have w =
∑n
i=b+1 i

−z ≤ 2n1−z. Thus, for

` = 8n1−zbz buckets, again by Markov’s inequality, we
bound the probability that the total activity of non-
active users will exceed s

2ζ(z)bz
by 1/4. It also holds

n1−zbz ≥ b for b ≤ n and 0 < z < 1.

• For z > 1 we have w =
∑n
i=b+1 i

−z ≤ 2b1−z. Thus, for
` = 8b we bound the probability for more than s

2ζ(z)bz

actions by non-active users to 1/4.

By the union bound we then conclude that with probability
at least 5/8 an active user ui will be the only active user in
g(ui) and the number of actions performed by him/her will
be at least twice the actions performed by other users and
hashed to g(ui). We need k = O(1

ε2p
) minimum hash values.

Assume in each bin we record the 2k minimum hash values.
Applying the same reasoning as in the proof of Theorem 4,
we obtain that for h being (α, 2k)-wise independent, with
error probability p1 the k actions performed by ui with the
smallest hash values are recorded. Consider now an edge
(ui, uj), 1 ≤ i, j ≤ b. As shown in the proof of Theorem 4,
with error probability p2 the k minimum hash values for ui
and uj yield an (1±ε) of puiuj . One can choose a sufficiently
small constant α such that p1 + p2 < 1/2, thus the median
of O(log 1

δ
) approximations is an (ε, δ)-approximation.

The time and space complexity follow directly from the
above discussion and the proof of Theorem 4.

	longversion
	longversion

