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ABSTRACT
Counterfactual explanations are a natural way for humans to gain

understanding and trust in the outcomes of complex machine learn-

ing algorithms. In the context of natural language processing, gen-

erating counterfactuals is particularly challenging as it requires the

generated text to be fluent, grammatically correct, and meaningful.

In this study, we improve the current state of the art for the gener-

ation of such counterfactual explanations for text classifiers. Our

approach, named RELITC (Relevance-based Infilling for Textual

Counterfactuals), builds on the idea of masking a fraction of text

tokens based on their importance in a given prediction task and

employs a novel strategy, based on the entropy of their associated

probability distributions, to determine the infilling order of these

tokens. Our method uses less time than competing methods to

generate counterfactuals that require less changes, are closer to

the original text and preserve its content better, while being com-

petitive in terms of fluency. We demonstrate the effectiveness of

the method on four different datasets and show the quality of its

outcomes in a comparison with human generated counterfactuals.
1
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Figure 1: Two examples of counterfactuals from the OLID
dataset [40]. Given a tweet (on the left) classified as offensive
by the black-box classifier,RELITC generates a tweet that is as
close as possible to the original one and flips the prediction.

1 INTRODUCTION
The recent breakthroughs in the ability to train large language

models (LLMs) have pushed NLP techniques to achieve impressive

performances on a wide variety of tasks and to be used in high-stake

decisions and applications across widespread types of industries.

LLMs are composed of millions or billions of parameters and trained

over large corpora, so that only few companies are able to produce

them. This rises several ethical concerns. Firstly, these models are

generally considered opaque black-box models [24] due to their

complexity. Secondly, the proprietary nature of some LLMs make

them inaccessible to users and developers, e.g., because of com-

mercial secrecy and intellectual property [9]. These issues can be

obstacles towards the responsible deployment of these models and

their indiscriminate use can exacerbate or even create new types of

biases [29]. Consequently, developing explainability methods for

NLP is a goal of uttermost importance.

Given the complexity of LLMs, developing methods that pro-

duce interpretable models based on a limited number of human-

interpretable features seems impractical. For this reason, the bulk

of the effort has been so far devoted to techniques that produce

post-hoc explanations [6]. An important group of post-hoc methods

is based on counterfactuals. Supported by cognitive science, the idea

at the basis of counterfactuals is that of explaining the reason of

an event comparing it with an event that did not occur [26], while

most of the potential causes leading to it, still were present. In other

terms, the goal of counterfactual explanations is to show what a

machine learning model considers a valid opposite example [24].

In the context of an NLP classification task, a counterfactual is a

piece of text that, while being as similar as possible to the original

text, is classified differently by the model.
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More formally, given a text 𝑥 ∈ X composed of a set of 𝑁 tokens

𝑥 = [𝑡1, 𝑡2, ..., 𝑡𝑁 ], and a binary black-box classifier B : X → [0, 1]
whose prediction on 𝑥 is B (𝑥) ∈ [0, 1], a text 𝑥 is a counterfactual

of 𝑥 if the following conditions are fulfilled:

(1) counterfactual class: 𝑥 is in a different class, B (𝑥) ≠ B (𝑥);
(2) closeness: 𝑥 and 𝑥 differ only by minimal lexical changes;

(3) feasibility and content preservation: 𝑥 is a feasible text (𝑥 ∈ X)
and the content of 𝑥 is preserved.

We denote with B (𝑥) = 𝑦 the original label of 𝑥 and B (𝑥) = 𝑦𝑐 the
counterfactual label. Two examples are shown in Figure 1.

Defining accurate and reliable counterfactual methods for NLP

tasks is an open research question with applications going beyond

explainability. One such example is the assessment of the fairness

of black-box classifiers with respect to sensitive attributes. Indeed,

divergent predictions by classifiers for texts varying solely in the

mentioned identity groups suggest an unfair behavior of the model

and necessitate analyst intervention. Counterfactuals can aid in

creating metrics to assess how predictions change when sensitive

attributes are changed [14]. Counterfactuals have a potential ap-

plication in text detoxification as well. Given a sentence classified

as inadequate, its counterfactual would be an alternative text that

retains the original content with minimal lexical changes, but is

no longer labeled as toxic by the classifier. This allows the author

of the text to discern triggering elements and receive suggestions

for alternative phrasing. Therefore, textual counterfactuals offer

a valuable and actionable response to contrast hate-speech or dis-

criminatory attitudes online. Other applications of counterfactuals

include model auditing and debugging [19], identifying spurious

correlations in datasets [46], model debiasing [34], and the assess-

ment of factual consistency in automatic text summarization [51].

Challenges and contributions. The main challenge in generating

textual conterfactuals is producing a text that is realistic, in order to

be acceptable by humans [26]. This general requirement is faceted,

as it is related to plausibility [18], fluency [39], grammatical correct-

ness, and semantic meaningfulness [27]. Furthermore, to generate a

good counterfactual we need to respect the “closest possible world”

requirement [47], which, in the context of NLP, means that the

textual counterfactual must have the minimum amount of edits

with respect to the original instance [38, 49].

One approach to address these challenges consists in replacing

the words that contribute the most to the prediction of the black

box with words that push the prediction to a different label [50].

These words can be first identified and masked through a feature

attribution method, and then replaced using a masked language

model, i.e. a model trained to infill words that are masked in a text

(e.g., BERT [7]). This approach enforces the “closest possible world”

requirement by-design, since the original text is modified through

word substitutions. However, the order with which these words

are infilled may affect the fluency of the generated counterfactuals.

As finding the optimal ordering is hard (𝑛! possible orderings for

𝑛 words to be replaced), recent efforts have proposed pre-training

strategies in which words are infilled in random order to make the

model perform equally well independently of the chosen ordering.

However, the infilling orderings defined for the inference step either

employ simple left-to-right [3, 8] or random ordering [21], or use

beam-search to approximate the optimal trajectory [42].

In this paper, we introduce RELITC (Relevance-based Infilling

for Textual Counterfactuals), a new method for textual counter-

factual generation. Given a NLP classifier and an input text, our

method first replaces with mask tokens a fraction of the most im-

portant words with respect to the label predicted by the classifier.

These are identified through a feature importance method. Then, a

conditional masked language model (CMLM, i.e. a model that can

condition its prediction on a desired attribute) outputs a probability

distribution over a vocabulary for each mask token, conditioning

on the counterfactual label. Mask tokens are infilled by sampling

from these probability distributions. To choose the order to infill

the mask tokens, we define a novel strategy based on the entropy of

their associated probability distributions. Intuitively, the lower the

entropy associated to a mask token, the more confident the model

in the prediction of the word to replace.

In particular, our main contributions are:

• We introduce RELITC, an approach to generate counterfactuals

for text classifiers that first masks important words for the classi-

fier and then infills them through a masked language model con-

ditioned on the counterfactual class. The evaluation of RELITC
on four real-world datasets associated to different classification

tasks shows that the generated counterfactuals are feasible, close

to the input text, effectively flip the predicted label, and preserve

well its original content. RELITC generates counterfactuals that

are close to human-edited examples as well.

• We define a novel ordering strategy to choose the order with

which mask tokens are infilled. This produces counterfactuals

that are more fluent compared to the common left-to-right infill-

ing, especially for long texts.

• We show with a small-scale experiment that RELITC achieves

comparable performance with both a model-specific (Integrated

Gradients [44]) and a model-agnostic feature importance meth-

ods (SHAP [22]). This is useful when it is not possible to have

full access to the black-box classifier, but it can only be queried.

• We show that RELITC better preserves the content of the orig-

inal input text requiring less edits than the ones generated by

MiCe [39], a state-of-the-art counterfactual text generator, while

being competitive in terms of fluency. For one dataset, we con-

ducted a human evaluation that confirms these observations.

RELITC is also faster than MiCe in generating counterfactuals.

2 RELATEDWORK
NLP explainability. Explainability for NLP [6, 54] is challenging

due to the unstructured nature of the input: techniques that are

effective with tabular or image data cannot be adapted straight-

forwardly. Feature importance can be used to generate saliency

maps of the most relevant words in the text [28, 48]. Another ap-

proach is based on surrogate models, i.e. learning a second, more

interpretable model locally [2, 33, 37, 45]. Explainable methods can

be applied at different stages [54]: (a) at the embedding phase in

the input space [1, 11, 13, 30, 32]; (b) at the model or attention

layer where explainability methods attempt to interpret internal

states [15, 25]; and (c) at the output layer.

NLP counterfactuals. Textual counterfactual generation shares

some aspects with other NLP tasks, namely adversarial attacks

and style transfer. The former aims at making imperceptible text
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Figure 2: RELITC approach. Given a text and a black-box classifier given as input (step 0), a Feature Attribution Method is
selected to return a token-level relevance score. The fine-tuning of the Conditional Masked Language Model (CMLM) (steps 1
and 2) is based on learning to infill a percentage 𝑝 𝑓 of the most relevant tokens according to the feature attribution method with
respect to the original class. The generation procedure (steps 3 to 5) minimizes the fraction 𝑝𝑔 of replaced tokens by repeatedly
masking the most relevant tokens (step 3), and infilling them according to the confidence of the CMLM (step 4).

perturbations that can cause a model to return incorrect predictions

regardless of the feasibility of the output text [53]. The latter aims

at changing the style of a text while preserving its content, with no

need to be close to the original text in terms of edit distance [17].

Some authors have proposed to generate counterfactuals through

text perturbations that are neither task-specific nor black-box de-

pendent. Polyjuice [49] is able to perturb an input text according

to 8 different transformations such as paraphrasing, word substitu-

tions, and negations. It is trained on sentence-pairs datasets, one

dataset for each transformation. Fryer et al. [12] propose a method

based on a language model that can vary sensitive attribute features

of the original text using specific prompts, such as race and gender.

Although useful for auditing black boxes with respect to general

text transformations, these methods are not directly related to the

specific task for which the black box was trained.

Other approaches, including the present work, aim at producing

task-specific counterfactuals. One possible approach consists in

using the predictions of the black box to find perturbations in the

latent space [38] or steer the internal states [23] of a language model

to generate counterfactuals. Another methodology is “Mask and

infill”, borrowed from the style transfer literature [50]. It involves

two steps: replacing portions of text with blanks and then filling

these blanks with texts more relevant to the counterfactual class.

In the context of counterfactual generation, Chen et al. [5] propose

a model that splits texts into chunks through a syntactic parser

and uses GPT3 [4] to infill these spans. The black box is then used

to filter counterfactuals that flip the predicted class. However, the

black box can inform the selection of text spans to mask. In the

case of MiCe [39], which is the work most related to our approach,

a feature attribution method is employed to identify the most im-

portant words for the black box. After the masking step, MiCe uses

the T5 model [35] to infill the masked spans conditioning on the

counterfactual label, after fine-tuning on a specific dataset. This

model is able to make minimal changes to generate fluent counter-

factuals thanks to the performance of the T5 language model in text

generation. The T5 model of MiCe is fine-tuned to infill masked

spans from left to right, thus neglecting other possible trajectories.

Our approach aims at addressing these limitations with a model

having half of the number of parameters.

3 THE RELITC APPROACH
In this section, we introduce RELITC, our method for generating

textual counterfactuals whose core components are summarised in

Figure 2. It involves two steps. Firstly, fine-tuning a CMLM to make

it able to infill mask tokens conditioning on a desired label (step 1

and 2 in Figure 2). Secondly, the generation of the counterfactual

by masking a fraction 𝑝𝑔 of its most informative tokens (step 3) and

infilling one mask per time using the fine-tuned CMLM conditioned

on the counterfactual label. The infilling ordering is guided by the

confidence of the model in the prediction of the token (step 4 in

Figure 2). We provide details about the fine-tuning of the CMLM in

§3.1, while we report the details about the generation phase in §3.2.

3.1 Fine-tuning the conditional language model
RELITC uses a masked language model to infill mask tokens given

the context provided by the unmasked words and conditioned on

an input label. The fine-tuning of the CMLM is inspired by [39].
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Algorithm 1: The infilling mechanism of RELITC.

Input :𝑚𝑎𝑠𝑘𝑒𝑑_𝑡𝑒𝑥𝑡 , CMLM
Output :𝑐𝑜𝑢𝑛𝑡𝑒𝑟 𝑓 𝑎𝑐𝑡𝑢𝑎𝑙𝑠

1 Function Mask_Infill:
2 𝑙𝑜𝑐_𝑚𝑎𝑠𝑘𝑠 ← where_masks(𝑚𝑎𝑠𝑘𝑒𝑑_𝑡𝑒𝑥𝑡)
3 while len(𝑙𝑜𝑐_𝑚𝑎𝑠𝑘𝑠) > 0

4 𝑛𝑒𝑥𝑡_𝑡𝑜𝑘_𝑝𝑟𝑜𝑏𝑠 ← CMLM(𝑚𝑎𝑠𝑘𝑒𝑑_𝑡𝑒𝑥𝑡)
5 𝑡𝑜𝑘2𝑖𝑛𝑓 𝑖𝑙𝑙 ←

select_token(𝑙𝑜𝑐_𝑚𝑎𝑠𝑘𝑠, 𝑛𝑒𝑥𝑡_𝑡𝑜𝑘_𝑝𝑟𝑜𝑏𝑠)
6 𝑚𝑎𝑠𝑘𝑒𝑑_𝑡𝑒𝑥𝑡 ←

infill_token(𝑛𝑒𝑥𝑡_𝑡𝑜𝑘_𝑝𝑟𝑜𝑏𝑠, 𝑡𝑜𝑘2𝑖𝑛𝑓 𝑖𝑙𝑙)
7 𝑙𝑜𝑐_𝑚𝑎𝑠𝑘𝑠 ← where_masks(𝑚𝑎𝑠𝑘𝑒𝑑_𝑡𝑒𝑥𝑡)
8 end
9 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 𝑓 𝑎𝑐𝑡𝑢𝑎𝑙𝑠 ←𝑚𝑎𝑠𝑘𝑒𝑑_𝑡𝑒𝑥𝑡

10 return 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 𝑓 𝑎𝑐𝑡𝑢𝑎𝑙𝑠

11 end

First, a feature attribution method assigns a relevance score to all

the words in the input text, which quantifies the contribution of

each word in the prediction of the black box.
2
Then, a fraction

𝑝 𝑓 of the most important tokens is replaced with a mask token,

with 𝑝 𝑓 sampled uniformly in the interval (𝑝 𝑓 ,min
, 𝑝 𝑓 ,max

) (step 1

in Figure 2).

Afterwards, a control code corresponding to the label predicted

by the black box is prepended to the instace (step 2). For example,

in a sentiment classification task, the input sequence is prepended

with the control code “positive:” (“negative:” ) to condition on the

positive (negative) class. Intuitively, the control code makes the

CMLM learn correlations between classification labels and words

related to a specific class.

Finally, the CMLM is fine-tuned to predict the words that were

masked using the masked language modeling loss [7] (step 2). This

allows tailoring the model to the specific task by letting the CMLM

focus on the most relevant words for the black box.

We employ a pre-trained BERT model as the conditional masked

language model of RELITC and Integrated Gradients as the feature

attribution method in our experiments, which requires to have

access to the black-box model (model-specific). In case this is not

possible since the black-box classifier can only be queried, it could

be replaced by a model-agnostic method.

3.2 Textual counterfactuals generation
The CMLM can then be used to infill mask tokens conditioned on

the counterfactual label. Given an input text, we mask the input

with a procedure similar to the one described in the fine-tuning

step (not necessarily using the same feature attribution method).

In particular, we mask a fraction 𝑝𝑔 of the most important words

of the text (step 3 in Figure 2) and then prepend the control code

corresponding to the counterfactual label instead of the predicted

label (step 4). This allows the fine-tuned model to infill mask tokens

conditioning on the counterfactual label. The infilling process is

illustrated in Algorithm 1. The masked input text is fed into the

2
Whenever the tokenizer splits a word into subwords, their relevance scores are

aggregated through max pooling to prevent uninterpretable word splits.

Algorithm 2: RELITC Search for theminimal mask fraction

Input :𝑡𝑒𝑥𝑡 , BlackBox, CMLM, 𝑡𝑜𝑘𝑒𝑛_𝑠𝑐𝑜𝑟𝑒𝑠 , 𝑦𝑐 ,
𝑝𝑔,min, 𝑝𝑔,max,𝑚

Output :𝑐𝑜𝑢𝑛𝑡𝑒𝑟 𝑓 𝑎𝑐𝑡𝑢𝑎𝑙𝑠, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

Global :𝑐𝑜𝑢𝑛𝑡𝑒𝑟 𝑓 𝑎𝑐𝑡𝑢𝑎𝑙𝑠 ← empty list

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 ← empty list

1 while𝑚 > 0 & (1/𝑝𝑔,min − 1/𝑝𝑔,max > 1/#tokens(𝑡𝑒𝑥𝑡))
2 𝑝𝑔 ← (𝑝𝑔,min + 𝑝𝑔,max)/2
3 𝑚𝑎𝑠𝑘𝑒𝑑𝑇𝑒𝑥𝑡 ← mask_text(𝑡𝑒𝑥𝑡, 𝑝𝑔, token_scores)
4 𝑚𝑎𝑠𝑘𝑒𝑑𝑇𝑒𝑥𝑡 ← add_ctrl_code(𝑚𝑎𝑠𝑘𝑒𝑑_𝑡𝑒𝑥𝑡,𝑦𝑐 )

/* call Alg. 1 to infill 𝑚𝑎𝑠𝑘𝑒𝑑𝑇𝑒𝑥𝑡 w. CMLM */

5 𝑛𝑒𝑤𝐶𝑛𝑡𝑒𝑟 𝑓 𝑎𝑐𝑡𝑙𝑠 ← Mask_Infill(𝑚𝑎𝑠𝑘𝑒𝑑𝑇𝑒𝑥𝑡, CMLM)
6 𝑛𝑒𝑤_𝑝𝑟𝑒𝑑𝑠 ← BlackBox(𝑛𝑒𝑤𝐶𝑛𝑡𝑒𝑟 𝑓 𝑎𝑐𝑡𝑙𝑠)
7 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 𝑓 𝑎𝑐𝑡𝑢𝑎𝑙𝑠.append(𝑛𝑒𝑤𝐶𝑛𝑡𝑒𝑟 𝑓 𝑎𝑐𝑡𝑙𝑠)
8 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠.append(𝑛𝑒𝑤_𝑝𝑟𝑒𝑑𝑠)
9 if any(𝑛𝑒𝑤_𝑝𝑟𝑒𝑑𝑠 == 𝑦𝑐 )

10 𝑝𝑔,max ← 𝑝𝑔

11 else
12 𝑝𝑔,min ← 𝑝𝑔

13 end
14 𝑚 ←𝑚 − 1
15 end

model to output one probability distribution across the model’s

vocabulary for each mask token (line 4). Instead of replacing all

masked tokens in a single forward pass, we select one mask token

to be replaced (lines 5 and 6) and fed the resulting text again into

the model (step 4 and lines 3-8). The benefit consists in the model

having more context to predict the next token after each step.

However, there is no a priori order to infill the mask tokens. Usu-

ally, infilling proceeds from left to right, but there is no reason to

consider this ordering optimal. Therefore, after having tested multi-

ple infilling strategies, we define an infilling order informed by the

model’s confidence in the prediction of the next token. Specifically,

we compute the entropy associated with the output probability

distributions and choose to infill the mask token having the lowest

entropy. Intuitively, the lower the entropy, the more peaked is the

probability distribution around a few tokens, thus signaling the

model being more confident about the prediction. This strategy has

a twofold benefit: first, at each step, we infill the mask token for

which the model is more confident, and second, mask tokens for

which themodel is uncertain are infilled later, thus taking advantage

of a larger available context.

Finally, the optimal mask fraction 𝑝𝑔 is determined through

a binary search in the interval (𝑝𝑔,min, 𝑝𝑔,max), whose aim is to

minimize themask fraction needed to generate a counterfactual [39].

In that way, only the minimum number of tokens is changed to flip

the prediction of the black box. This process is shown inAlgorithm 2.

The binary search starts by masking a fraction 𝑝𝑔 of the most

relevant words of the input text (lines 2-3), according to the feature

attribution method. Then, the control code of the counterfactual

label is prepended to the masked text and the CMLM generates 𝑁

candidate counterfactual examples from the masked text (lines 4-5).

The black box predicts the labels of the candidate counterfactuals
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(line 6) and, if at least one candidate counterfactual is classified in

the counterfactual class 𝑦𝑐 , we consider it a successful generation,

otherwise the generation is a failure (line 9). In the former case,

we replace 𝑝𝑔,max with 𝑝𝑔 , thus decreasing the mask fraction of the

next step of the binary search (line 10). In case of failure, the mask

fraction is increased (lines 12). We stop the binary search at the

𝑚-th level (line 1) or when the updated values of 𝑝𝑔,min and 𝑝𝑔,max

would both lead to the same number of masked tokens used in the

previous level of the search.

We set the hyper-parameters similarly to [39], with 𝑝 𝑓 ,min
=

0.20, 𝑝 𝑓 ,max
= 0.55, 𝑝𝑔,min = 0.0, 𝑝𝑔,max = 0.50, and a maximum

level 𝑚 = 4 for the binary search. We sample 𝑁 = 15 candidate

counterfactuals during each round using nucleus sampling [10, 16]

for generation with 𝑡𝑜𝑝𝑘 = 50 and 𝑡𝑜𝑝𝑝 = 0.95.

3.3 Evaluation metrics
We employ different metrics to automatically evaluate the quality

of the counterfactuals of RELITC and different baselines, comparing

them to the original input text and human-edited counterfactuals.

Flip rate quantifies for how many instances the tested approach

is able to generate a counterfactual, i.e. a text whose predicted label

corresponds to the counterfactual label. It is defined as the fraction

of successful counterfactual examples. (the higher, the better)

Normalized Edit Distance (NED) [39] quantifies the closeness
between the original and the counterfactual texts. It is defined

as the Levenshtein distance between the original text 𝑥 and the

generated counterfactual 𝑥 divided by the number of words in 𝑥 .

The Levenshtein distance corresponds to the minimum number of

substitutions, insertions, or deletions of words required to change

one text into the other. It ranges from 0 to 1, where 0 indicates that

the two texts are identical. (the lower, the better)

Content preservation quantifies to what extent the content

of the input text is preserved in a generated counterfactual. To

this end, we use SBERT [36] to encode both the original input

and the counterfactual text into two vectors, x and x̃ respectively.

Then, the content preservation is defined as the cosine similarity

between the two vectors. We used the all-mpnet-base-v2 model
3
.

The measure ranges from -1 to 1, where 1 indicates that the two

texts are maximally similar. (the higher, the better)

Fluency quantifies how well a counterfactual text reads in Eng-

lish in comparison to the input text and can be considered as a proxy

for plausibility [39]. Fluency is computed automatically using a

masked language model. Given a text composed of a sequence of 𝑁

tokens 𝑥 = [𝑡1, 𝑡2, ..., 𝑡𝑁 ], let 𝑥\𝑡𝑖 = [𝑡1, ..., 𝑡𝑖−1, 𝑀𝐴𝑆𝐾, 𝑡𝑖+1, ..., 𝑡𝑁 ]
be the same sequence as 𝑥 in which the token 𝑡𝑖 is replaced with a

mask token. Following Ref. [40], we define the normalized masked

language model score of 𝑥 as:

𝑀𝐿𝑀 𝑠𝑐𝑜𝑟𝑒 (𝑥) = 1

𝑁

𝑁∑︁
𝑖=1

log 𝑃𝑀𝐿𝑀

(
𝑡𝑖 |𝑥\𝑡 ;Θ

)
where 𝜃 denote the parameters of the masked language model

and 𝑃𝑀𝐿𝑀

(
𝑡𝑖 |𝑥\𝑡𝑖 ;Θ

)
is the probability returned by the masked

language model that the token 𝑡𝑖 can replace the mask token in 𝑥\𝑡𝑖 .
Intuitively, this score quantifies how likely the sequence 𝑥 is for

3
https://huggingface.co/sentence-transformers/all-mpnet-base-v2

the masked language model and has been shown to perform well

in linguistic acceptability tasks [40]. The fluency of the generated

counterfactual example 𝑥 against 𝑥 is then defined as:

𝑓 𝑙𝑢𝑒𝑛𝑐𝑦 (𝑥 ;𝑥) = 𝑀𝐿𝑀 𝑠𝑐𝑜𝑟𝑒 (𝑥)
𝑀𝐿𝑀 𝑠𝑐𝑜𝑟𝑒 (𝑥) .

When close to 1, this score indicates that the the sequences 𝑥 and

𝑥 are equally likely for the masked language model. On the other

hand, when larger (lower) than 1, the counterfactual example is less

(more) likely than the original input text. We used the bert-base-

uncased pre-trained model as the masked language model
4
. (the

closer to 1, the better)

Mask Fraction is the fraction of masked tokens 𝑝𝑔 defined in

§3.2. It corresponds to the minimum fraction of tokens needed to

generate a successful counterfactual. (the lower, the better)

BLEU was originally introduced to evaluate the accuracy of

machine translations with respect to a reference translation [31].

BLEU can also be used to compare generated counterfactuals with

reference texts edited by humans. It takes values between 0 and 1,

and the higher the BLEU the closer the generated text to the human

reference. (the higher, the better)

4 EVALUATION
In this section we present the experiments aimed at assessing the

effectiveness of our approach. In all the experiments we generate

counterfactuals for a machine-learning classifier trained on a spe-

cific task in a specific dataset and use the very same classifier to

decide whether the output texts of our algorithm are indeed coun-

terfactuals (i.e. they fall into a different class). All experiments are

performed on a NVIDIA Quadro RTX 6000 (24GB).

We compare our approach against few non-trivial baselines, a

competing method (§4.3), and counterfactuals generated manually

by human annotators (§4.4). Before presenting the results, we briefly

describe the datasets (§4.1) and the baseline methods (§4.2).

4.1 Datasets
We perform experiments on the following datasets:

Yelp5 is a sentiment classification task already split into 560,000

train and 38,000 test instances, balanced between two classes. Texts

correspond to reviews of business activities and labels to their

sentiment. The black box we use is trained on this training set
6
. For

our experiments we sample 100,000 train instances for training and

10,000 test instances to generate counterfactuals. We use 20% of the

training instances as validation set. After truncating all reviews to

256 tokens (due to limits in our GPU capacity), there are 111 words

per instance on average.

OLID [52] is a two-class offensiveness detection task containing

13,240 train (33% offensive) and 860 test (28% offensive) tweets

annotated using crowd-sourcing. The black box used is trained on

this training set
7
. We train the counterfactual methods on the same

dataset and generate counterfactuals on the test set. We use 20%

of the training instance as validation set. After removing mentions

and urls, there are 23 words per tweet on average.

4
https://huggingface.co/bert-base-uncased

5
https://www.kaggle.com/datasets/yelp-dataset/yelp-dataset

6
https://huggingface.co/textattack/bert-base-uncased-yelp-polarity

7
https://huggingface.co/cardiffnlp/twitter-roberta-base-offensive
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Table 1: Results of RELITC on the Yelp and OLID datasets, using the left-to-right (L2R) and confidence (Conf.) infilling orderings.
Values refer to the average of the corresponding metric across successful counterfactuals. Bold texts refer to the best score for
each metric, and symbols indicate that RELTIC is significantly better than MiCe (Welch’s t-test statistic: * 𝑝 < 0.05; ** 𝑝 < 0.001).

YELP OLID
Flip rate ↑ NED ↓ Fluency (≈ 1) Content ↑

preserv.

Mask ↓
Frac.

Flip rate ↑ NED ↓ Fluency (≈ 1) Content ↑
preserv.

Mask ↓
Frac.

BERTL2R 0.742 0.211 1.021 0.813 0.240 0.579 0.307 0.910 0.789 0.195

BERT
Conf

0.743 0.208 0.991 0.813 0.239 0.614 0.334 0.887 0.780 0.208

MiCe 0.999 0.239 1.041 0.837 0.175 1.000 0.246 1.037 0.749 0.187

RELITCL2R 0.948 0.129** 1.075 0.900** 0.170* 0.999 0.199** 1.059 0.882** 0.086**
RELITC

Conf
0.943 0.124** 1.046 0.901** 0.171* 0.998 0.204** 1.046 0.877** 0.094**

Yelp sentence [20, 43] is a sentence-level sentiment classifica-

tion task. It contains 443,259 train, 4000 validation, and 1000 test

instances. The latter two splits are balanced, while 60% of the sen-

tences in the training set are positive. We fine-tune the black box

starting from a bert-base-uncased pre-trained model and fine-tune

the counterfactual models on the same training set. Then, the test

set is used for the generation of counterfactuals. In addition, for

each instance in the test set there is one human-edited counterfac-

tual as reference. There are 8 words per sentence on average.

Call me sexist but... [41] contains tweets labeled as sexist and

non-sexist annotated using crowd-sourcing. We will refer to this

dataset as “CallMe”. We split the dataset into 6982 train, 1745 valida-

tion, and 3728 test examples, all splits containing 85% of non-sexist

tweets. We fine-tune the black box starting from a bert-base-uncased

pre-trained model and fine-tuned the counterfactual models on the

same training set. Tweets in the test set were used to generate

counterfactuals. The dataset contains human-edited examples of

tweets obtained through crowd-sourcing, whose original class is

sexist. There are 383 of such examples in the test set. The tweets

contain 15 words on average.

4.2 Baselines
The first baseline consists in using the left-to-right (L2R) ordering

to infill the masked words instead of our proposed ordering, which

is informed by the confidence of the masked language model. This

provides a comparison between the two infilling orderings. We

name these two models RELITCL2R and RELITC
Conf

respectively.

In addition, we compare the results of RELITC
Conf

against two

baselines and one-state-of-the-art method:

BERT: these baselines are based on the pre-trained bert-base-

uncased. The only difference with RELITC is that the baselines are

not fine-tuned on a specific dataset and can only rely on the control

code to condition on the counterfactual label. Thus, these baselines

inform about how RELITC benefits from the task-specific fine-

tuning in conditioning the text infilling towards the desired coun-

terfactual class. We distinguish between BERTL2R and BERT
Conf

depending on the ordering strategy used.

MiCe [39]: we compare our approach with MiCe, a state-of-

the-art model that shares a similar framework and addresses the

same problem as RELITC. MiCe aims to generate minimal and fluent

counterfactuals for NLP tasks, which aligns with the objective of our

proposedmethodology. Details aboutMiCe and themain differences

with RELITC are discussed in §2.

4.3 Comparison with other methods
In this section we compare MiCe [39] and the BERT baselines

mentioned above with our RELITC approach.

Comparisons based on averages over a dataset: We start with

the Yelp and Olid datasets. The corresponding results are shown

in Table 1. First, we compare the BERT baselines to our RELITC,
regardless of the infilling strategy. As expected, the BERT base-

lines lead to substantially lower flip rates than our RELITC model

(less than 75% for YELP and 62% for OLID vs. above 94% and 99%

respectively). This shows that fine-tuning the model is effective

in generating counterfactuals that flip the label predicted by the

classifier. At the same time, fewer tokens need to be changed (lower

mask fraction and lower NED) and the content is closer to the input

text (Content preserv. column)
8
.

When comparing the two ordering strategies of RELTIC we

observe that Confident generates counterfactuals whose fluency
is lower than the ones generated through L2R. This can be best

observed in the Yelp dataset where the fluency has a relative im-

provement of 3% (from 1.075 for L2R to 1.046 for Confident), and

might be explained by the larger input text length of YELP. Indeed,

the differences between the two orderings can be better appreciated

in longer texts because, for a fixed mask fraction, more words are

masked and the infilling trajectories may show larger differences.

In preliminary experiments on the Yelp dataset (data not shown),

we have also evaluated RELITC with right-to-left and inverse con-

fidence orderings (i.e. mask tokens are infilled from least to most

confident). We observed right-to-left to perform similar as left-to-

right, while the fluency of the inverse confidence ordering degrades

compared to RELITC
Conf

.

The comparison betweenRELITC
Conf

andMiCe shows that our
approach is able to generate counterfactual examples that better

preserve the content of the original input text and are closer to

the original text (lower NED: averages of 0.124 vs 0.239 for YELP

and 0.204 vs. 0.246 for OLID), while being comparable in terms of

fluency (averages of 1.046 vs 1.041 for YELP and 1.046 vs. 1.037 for

OLID). All those differences are statistically significant. In the OLID

dataset we also need to change a significantly lower fraction of

tokens (mask fraction of 8.6% vs 18.7%). The main drawback is a

slightly lower flip rate. This is especially true for the Yelp dataset in

8
Note that BERT generates counterfactuals whose average fluency is in some cases,

e.g. in the OLID dataset, lower than 1. This is likely to be an artifact caused by using

in this case the same model to infill the masked texts and to evaluate fluency. In other

words, this means that the fluency model considers the infilled words to be more likely

than the words of the original text.
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Table 2: Results of RELITC on the Yelp sentence and CallMe dataset. BLEU scores are computed only against human-edited
texts that are successful counterfactuals with respect to the black box. BLEU=1 for Human-edited texts by definition. Bold texts
refer the best score for each metric (except Human generated). Other details as in Table 1.

Yelp sentence CallMe
Flip rate ↑ NED ↓ Fluency (≈ 1) Content ↑

preserv.

Mask ↓
Frac.

BLEU ↑ Flip rate ↑ NED ↓ Fluency (≈ 1) Content ↑
preserv.

Mask ↓
Frac.

BLEU ↑

HUMAN 0.766 0.588 1.750 0.616 - 1.000 0.752 0.157 1.092 0.766 - 1.000

BERTL2R 0.905 0.203 1.174 0.700 0.159 0.534 0.453 0.313 1.001 0.729 0.227 0.814

BERT
Conf

0.894 0.208 1.182 0.666 0.165 0.528 0.430 0.306 1.112 0.729 0.220 0.813

MiCe 1.000 0.190 1.383 0.663 0.143 0.526 0.983 0.540 1.106 0.470 0.311 0.816
RELITCL2R 0.972 0.149** 1.545 0.727** 0.097** 0.542 0.815 0.295** 1.224 0.741** 0.219** 0.793

RELITC
Conf

0.970 0.150** 1.556 0.726** 0.095** 0.542 0.784 0.290** 1.208 0.737** 0.227** 0.802

which our approach is successful in 94% of the cases as compared

to MiCe, which is successful in more than 99% of the instances.

In Table 2 we show further comparison between RELITC and

MiCe for two other datasets: Yelp sentence and CallMe. We observe

the same tendencies as described above with the difference of higher

averages for fluency in both cases and a significantly lower flip rate

for CallMe. This latter observation might be due to the fact that it is

more difficult to generate counterfactuals for this sexism detection

task as can be seen from the higher mask fraction of all the models

in comparison to the other tasks involving texts with comparable

length (i.e., OLID and Yelp sentence whose mask fraction of RELITC
is lower than 10%). In addition, the flip rate is competitive when

the counterfactual label is non-sexist, while it is low when the label

is sexist (97.2% vs. 75%, data not shown). In other words, RELITC
struggles in transforming a non-sexist text into a sexist one. This

might indicate that the fine-tuning of RELITC is less effective than

the one of MiCe when the dataset is imbalanced. Indeed, only 15%

of the tweets are labeled as sexist.

In these experiments we employed Integrated Gradients as the

feature attribution method of RELITC but alternative methods can

be used. To explore the performance of RELITC with a different fea-

ture attribution method, we conducted a small-scale analysis on a
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Fraction of times RELITC performs better than MiCe
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Call me

Figure 3: Fraction of times RELITC outperforms MiCe for
each metric. Colors correspond to datasets, the vertical
dashed line to 0.5, text labels to the observed value and hori-
zontal black lines to 95% confidence intervals.

random sample of 100 examples from each dataset. By replacing In-

tegrated Gradients with SHAP, a model-agnostic feature attribution

method [22], we obtained results comparable to the ones shown in

Table 1 and Table 2. It is worth to notice that the mask fraction and

NED for the Yelp dataset improve (from 0.172 to 0.093 and from

0.119 to 0.084, respectively). This points to the feasibility of using di-

verse feature attribution methods during the fine-tuning and mask

infilling stages of RELITC, including model-agnostic methods.

Pairwise comparisons: In order to further assess to what extent

RELITC
Conf

performs differently from MiCe, we computed the

fraction of input text instances for which RELITC
Conf

counterfac-

tuals obtain better values for the different metrics than the ones

generated by MiCe.
9
This allows us to compare the results at the

level of single examples, while the scores in Table 2 are obtained

by averaging the results across the dataset.

Results are shown in Figure 3 for all four datasets and metrics

which are calculated at the instance level (NED, Fluency, Mask

Fraction and Content preservation). Consistently with the previous

considerations, RELITC
Conf

generates more frequently counterfac-

tuals that better preserve the content (more than 60% of the times

across all datasets), and that require a lower mask fraction (more

than 53% of the times across all datasets). This is also true for the

normalized edit distance (NED, also at least 53%) and for fluency

with the exception of the Yelp sentence dataset (light blue bars).

RELITC
Conf

performs best for OLID (green bars) in terms of

content preservation, mask fraction and fluency where it outper-

forms MiCe 74%, 80%, and 61% of the times respectively. The latter

is interesting in comparison with Table 1, where the average of the

fluency score was closer to one (and thus better on average) for

MiCe. This suggests a high skewness of the underlying distribution.

In fact, we observe a similar effect for the CallMe dataset, where

the average of fluency is considerably farther from the ideal score

than MiCe, but at an instance wise comparison both approaches

perform equally well and outperform the other ∼50% of the times.

To summarise, theConfident ordering contributes in generating
more fluent counterfactuals compared to the L2R ordering, while

our RELITC is better able at preserving the content of the original

input text with a lower number of edits thanMiCe. When compared

to single data examples, our RELITC performs better thanMiCe

9
If one of the two models is not able to generate a successful counterfactual, we

consider the other model to perform better. Thus, this evaluation favors the model

resulting in higher flip rate. Ties are excluded and count for neither side.
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in more than 50% of the examples for all the metrics, except for

Fluency in Yelp Sentence and CallMe (only parity).

Manual evaluation: We conducted a human evaluation similar to

the pairwise comparison discussed above to validate these results.

Four annotators rated a sample of 100 tweets from the OLID dataset,

with each tweet evaluated by three annotators. Annotators com-

pared blindly and in random order the counterfactuals generated by

RELITC
Conf

and MiCe for each tweet based on two criteria: fluency

and content preservation. Ratings were given on a 5-point Likert

scale from “Text 1 is clearly better” to “Text 2 is clearly better”, with

an intermediate score indicating that “Text 1 is as good as Text

2”. We assessed the inter-annotator agreement via Krippendorff’s

𝛼 coefficient, obtaining 0.32. Although low, the agreement is far

from random (𝛼 = 0) and reflects the difficulty of the task. Indeed,

the OLID dataset is composed of tweets, most of which are not

grammatically correct thus making it difficult to properly assess

how well the generated counterfactuals read in English. Then, we

aggregated annotators’ ratings by resolving conflicts with majority

vote and discarded a total of 5 tweets because the predicted label of

the original text was wrong. Whenever the three annotators gave

three different ratings, we kept the intermediate one. The evalua-

tion reveals that RELITC
Conf

counterfactuals better preserve the

content of the input text in 81% of the cases and are more fluent

66% of the times. These findings align with the results shown in Fig-

ure 3 for the OLID dataset, where RELITC
Conf

outperforms MiCe

in content preservation in 74% of cases and fluency in 61% of cases.

4.4 Comparison with human edits
Additionally, we also analyze how the generated counterfactuals

for the Yelp sentence and CallMe datasets compare with counterfac-

tuals generated by human annotators, for which these two datasets

include several hundreds of instances.

We use the BLEU score to measure the similarly between the

manual and machine generated counterfactuals. For the sake of

fairness, we consider human-edited texts only if they are successful

counterfactuals according to the output of the black box classi-

fier trained on the corresponding dataset. This percentage can be

observed in the flip-rate columns of the HUMAN row in Table 2,

where the BLEU columns give the results of this analysis for the

Yelp sentence and CallMe dataset. In both cases, we observe no

considerable difference between the L2R and Confident orderings,
regardless of the underlying model. In particular, the BERT

Conf

baseline performs marginally better than our RELITC in the CallMe

dataset (0.813 vs 0.802), but the flip rate is almost halved (45% vs.

78%). On the other hand, RELITC reaches higher BLEU scores than

MiCe in the Yelp sentence dataset (0.542 vs. 0.526), while it is the

opposite for the CallMe dataset (0.802 of RELITC vs. 0.816 of MiCe).

It is also worth comparing the similarity of the human generated

counterfactuals in terms of normalized edit distance (NED) and

Content preservation. In the CallMe dataset these scores are the

best for the human generated counterfactuals (NED = 0.157 and

Content preservation = 0.766), while for Yelp sentence the opposite

holds (NED = 0.588 and Content preservation = 0.616). Thus, the

machine generated counterfactuals and in particular the ones of

RELITC are better in full-filling the conditions introduced in §1.

Table 3: Average runtime in seconds per input of RELITC
Conf

and MiCe. Subscripts represent standard deviations.

Yelp OLID Yelp sentence CallMe

RELITC
Conf

8.76±10.28 0.71±0.45 0.28±0.07 0.46±0.29
MiCe 10.05±6.38 3.47±3.41 1.09±0.45 12.05±16.07

4.5 Runtime analysis
Finally, we compare the runtime of RELITC

Conf
and MiCe. We

sampled a balanced sample of 100 texts from all the four datasets

to generate counterfactuals using the previously trained models.

Table 3 shows that RELITC
Conf

is faster than MiCe on average

across all the datasets. This is likely due to the number of parameters

of the conditional masked language models employed by the two

methods (110M for BERT and 220M for T5), which makes it faster

for RELITC
Conf

to run a forward step through the model. Regarding

Yelp, RELITC
Conf

is still faster on average but the corresponding

standard deviation is large compared to the difference with MiCe,

thus signaling a broader distribution of the runtime.

5 CONCLUSIONS AND FUTUREWORK
We have presented RELITC, a novel approach for generating Natu-

ral Language Counterfactuals for text classifiers. By introducing a

novel infilling strategy based on model confidence, RELITC fills in

the most obvious tokens first and then iterates the process while

incorporating information from the already infilled words. Our ex-

perimental evaluation on four datasets demonstrates that RELITC
outperforms baselines and a state-of-the-art method by generating

counterfactuals that are closer to the original text, better preserve

the original content, and are feasible. Additionally, generated coun-

terfactuals are also closer to human-edited counterfactuals. We

furthermore show that RELITC gains as well in speed and is able to

generate counterfacutals faster. The lower number of parameters

of the CMLM of RELITC contributes to the runtime improvement.

These properties make RELITC a compelling method for model

explainability that can foster trust towards systems that become

increasingly integrated into various aspects of daily life by enhanc-

ing their transparency and accountability. Potential applications

include a model debugging tool for practitioners, or a model inter-

pretability tool that can help end users to understand the decisions

of black-box classifiers. Its applicability can go beyond explainabil-

ity (e.g., detoxification and data augmentation).

However, there are opportunities for further improvements. The

mask infilling step of RELITC can be made more flexible to delete

tokens or replace masked spans with an arbitrary number of tokens.

Our experiments do not include sensitivity analysis of hyperparam-

eters, which were chosen similarly to Ref. [39], or an evaluation

of how the employment of a different CMLM would affect the per-

formance of RELITC. Regardless of this, our results are already

compelling for all the datasets. Hyperparameter tuning or the em-

ployment of a different CMLMmight lead to a further improvement

of the metrics. Then, despite being agnostic to the choice of the

feature attribution method, we have performed experiments using

only Integrated Gradients, which requires to have full access to

the black-box. This allowed us to fairly compare our results with

MiCe, in particular for the runtime analysis. However, since an in-

creasing number of machine learning algorithms uses proprietary
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black-box classifiers build upon LLMs, fast and feasible strategies to

provide understandable explanations are required to allow humans

to trust in their results and the underlying algorithms. We provided

preliminary results in Section 4.3 showing that a model-agnostic

feature attribution method (SHAP [22]) would be competitive as

well. Although we validated the results provided by the automatic

metrics through a small scale manual evaluation, further research

is needed to evaluate the perceived utility and user acceptance of

RELITC’s counterfactuals in real-world applications.

While our work contributes to auditing black-box classifiers

and addressing transparency concerns, we recognize the ethical

implications of generating counterfactuals, particularly in sensitive

domains like toxicity detection. Indeed, RELITC provides a coun-

terfactual explanation for a text classified as “non-toxic” by editing

the input text into a text that the black box predicts as “toxic”. We

are aware that this mechanism can be used for malicious purposes

and, in the case of toxicity detection, to generate toxic content at

scale starting from normal texts, or to find examples that might cir-

cumvent automatic content moderation tools while still being toxic.

We explicitly disapprove the misuse of RELITC for malicious pur-

poses and emphasize its potential benefits in addressing problems

of transparency and interpretability of tools based on LLMs.

APPENDIX A: ADDITIONAL DETAILS AND
EXAMPLES OF COUNTERFACTUALS
Wefine-tuned the bert-base-uncased pre-trainedmodel as the CMLM

for a maximum number of 10 epochs, with batch size of 128, learn-

ing rate of 5 × 10−5 with linear decay, weight decay of 0.01, and

early stopping with patience of 4. We choose the final model to be

the one with minimum validation loss, computed 4 times per epoch.

Finally, we compute the metrics for the counterfactuals obtained

with the lower mask fraction and having the lowest minimality. If

this leads to multiple counterfactuals, we average their metrics.

Table A1: Example of counterfactual from the Yelp dataset.
Texts in bold correspond to the edits of each the models.

Method Yelp Example Text

Input text tried this when i was stopping by postnet a few stores

away. the place was empty at lunchtime but figured we

would give it a try anyway. the staff were very friendly

but the food was really uninspiring.

RELITCL2R tried this when i was stopping by postnet a few stores

away. the place was empty at lunchtime but figured we

would give it a try anyway. the staff were very friendly

but the food was really good very yummy.
RELITC

Conf
tried this when i was stopping by postnet a few stores

away. the place was empty at lunchtime but figured we

would give it a try anyway. the staff were very friendly

but the food was really good with great prices.
MiCe tried this when i was stopping by postnet a few stores

away. the place was really quiet but figured we would

give it a try anyway. the staff were very friendly but

the ph was really un remarking.
Metrics CF. label NED Fluen. Cont. Pres. Mask Frac.

RELITCL2R Positive 0.073 1.192 0.956 0.031

RELITC
Conf

Positive 0.097 1.173 0.947 0.031

MiCe Positive 0.146 1.585 0.740 0.137

Tables A1 and A2 provide example counterfactuals generated

by RELITC and MiCe and the corresponding metrics. The changes

with respect to the input text are highlighted in bold. Note than in

some cases the tokenizer splits a single words into multiple tokens.

Table A2: Example counterfactuals of three more datasets.

Method OLID Text

Input text #arianaasesina? is that serious?! holy s∗it, please your
fu∗ing ass∗oles, don’t blame someone for the death of

other one. she is sad enough for today, don’t you see?

it isn’t fault of none, he had an overdose and died. end.

stop wanting someone to blame, fu∗rs.
RELITCL2R #arianaasesina? is that serious?! holymother, please

your young sweethearts, don’t blame someone for the

death of other one. she is sad enough for today, don’t

you see? it isn’t fault of none, he had an overdose and

died. end. stop wanting someone to blame, watchers.
RELITC

Conf
#arianaasesina? is that serious?! holymother, please
your poor sweeties, don’t blame someone for the death

of other one. she is sad enough for today, don’t you see?

it isn’t fault of none, he had an overdose and died. end.

stop wanting someone to blame, heartbreakers.
MiCe #arianaasesina? is that serious?! #stop, keep yourhead

high, don’t blame someone for the death of other one.

she is sad enough for today, don’t you see? it isn’t fault

of none, he had an accident and died. end. stop wanting
someone to blame, rabid conservatives.

Metrics CF. label NED Fluen. Cont. Pres. Mask Frac.

RELITCL2R Non-off 0.063 1.034 0.926 0.063

RELITC
Conf

Non-off 0.063 1.033 0.932 0.063

MiCe Non-off 0.127 0.958 0.867 0.172

Method Yelp sentence Example Text

Input text it is very very family oriented and we loved that too!

HUMAN too many single people, not a place for your family

RELITCL2R it is very very child oriented and we hated that too!

RELITC
Conf

it is very very child oriented and we hated that too!

MiCe it is very very cheap food and we hate that too!

Metrics CF. label NED Fluen. Cont. Pres. Mask Frac.

HUMAN Negative 0.286 0.981 0.703 -

RELITCL2R Negative 0.167 1.130 0.624 0.094

RELITC
Conf

Negative 0.167 1.130 0.624 0.094

MiCe Negative 0.250 1.060 0.090 0.206

Method CallMe Example Text

Input text the husband is responsible for the family so the wife

must obey him.

HUMAN the parents are responsible for the family so the children

must obey them.

RELITCL2R the president is responsible for the family and the
people who obey him.

RELITC
Conf

the lord is responsible for the family and the family
must obey him.

MiCe the grandpa is responsible for the family so the fam
must protect him.

Metrics CF. label NED Fluen. Cont. Pres. Mask Frac.

HUMAN Non-sexist 0.286 0.981 0.703 -

RELITCL2R Non-sexist 0.286 1.245 0.512 0.313

RELITC
Conf

Non-sexist 0.214 0.641 0.743 0.250

MiCe Non-sexist 0.214 2.389 0.303 0.172
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