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Abstract Discrimination discovery from data is an impor-
tant data mining task, whose goal is to identify patterns
of illegal and unethical discriminatory activities against
protected-by-law groups, e.g., ethnic minorities. While any
legally valid proof of discrimination requires evidence of
causality, the state-of-the-art methods are essentially corre-
lation based, albeit, as it is well known, correlation does
not imply causation. In this paper, we take a principled
causal approach to discrimination detection following Sup-
pes’ probabilistic causation theory. In particular, we define
a method to extract, from a dataset of historical decision
records, the causal structures existing among the attributes in
the data. The result is a type of constrainedBayesian network,
which we dub Suppes-Bayes causal network (SBCN). Next,
we develop a toolkit of methods based on random walks on
top of the SBCN, addressing different anti-discrimination
legal concepts, such as direct and indirect discrimination,
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group and individual discrimination, genuine requirement,
and favoritism. Our experiments on real-world datasets con-
firm the inferential power of our approach in all these
different tasks.
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1 Introduction

1.1 The importance of discrimination discovery

At the beginning of 2014, as an answer to the growing con-
cerns about the role played by data mining algorithms in
decision making, USA President Obama called for a 90-day
review of big data collecting and analyzing practices. The
resulting report1 concluded that “big data technologies can
cause societal harms beyond damages to privacy”. In partic-
ular, it expressed concerns about the possibility that decisions
informed by big data could have discriminatory effects, even
in the absence of discriminatory intent, further imposing
less favorable treatment to already disadvantaged groups.
It further expressed alarm about the threats of an “opaque
decision-making environment” guided by an “impenetrable
set of algorithms.”

Discrimination refers to an unjustified distinction of
individuals based on their membership, or perceived mem-
bership, in a certain group or category. Human rights laws
prohibit discrimination on several grounds, such as gen-
der, age, marital status, sexual orientation, race, religion
or belief, membership in a national minority, disability,

1 http://www.whitehouse.gov/sites/default/files/docs/
big_data_privacy_report_may_1_2014.pdf.
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or illness. Anti-discrimination authorities (such as equality
enforcement bodies, regulation boards, consumer advisory
councils) monitor, provide advice, and report on discrim-
ination compliances based on investigations and inquiries.
A fundamental role in this context is played by discrimina-
tion discovery in databases, i.e., the data mining problem of
unveiling discriminatory practices by analyzing a dataset of
historical decision records.

1.2 Discrimination is causal

According to current legislation, discrimination occurs when
a group is treated “less favorably” [20] than others, or when
“a higher proportion of people not in the group is able to
comply” with a qualifying criterion [21]. Although these
definitions do not directly imply causation, as stated in [9]
all discrimination claims require plaintiffs to demonstrate a
causal connection between the challenged outcome and a
protected status characteristic. In other words, in order to
prove discrimination, authorities must answer the counter-
factual question: what would have happened to a member of
a specific group (e.g., nonwhite), if he or she had been part
of another group (e.g., white)?

“The Sneetches,” the popular satiric tale2 against discrim-
ination published in 1961 by Dr. Seuss, describes a society
of yellow creatures divided into two races: the ones with a
green star on their bellies and the ones without. The Star-
Belly Sneetches have some privileges that are instead denied
to Plain-Belly Sneetches. There are, however, Star-On and
Star-Off machines that can make a Plain-Belly into a Star-
Belly, and viceversa. Thanks to these machines, the causal
relationship between race and privileges can be clearly mea-
sured, because stars can be placed on or removed from any
belly, and multiple outcomes can be observed for an individ-
ual. Therefore, we could readily answer the counterfactual
question, saying with certainty what would have happened
to a Plain-Belly Sneetch had he or she been a Star-Belly
Sneetch. In the real world, however, proving discrimination
episodes is much harder, as we cannot manipulate race, gen-
der, or sexual orientation of an individual. This limitation
highlights the need to assess discrimination as a causal infer-
ence problem [6] from a database of past decisions, where
causality can be inferred probabilistically.

Unfortunately, the state of the art of data mining methods
for discrimination discovery (surveyed in Sect. 3) does not
properly address the causal question, as it is mainly correla-
tion based.

1.3 Correlation is not causation

It is well known that correlation between two variables does
not necessarily imply that one causes the other. Consider a

2 http://en.wikipedia.org/wiki/The_Sneetches_and_Other_Stories.

unique cause X of two effects, Y and Z : if we do not take into
account X , we might derive wrong conclusions because of
the observable correlation between Y and Z . In this situation,
X is said to act as a confounding factor for the relationship
between Y and Z .

Variants of the complex relation just discussed can arise
even if, in the example, X is not the actual cause of either Y
or Z , but it is only correlated to them, for instance, because
of how the data were collected. Consider for instance a credit
dataset where there exists high correlation between a variable
representing low income and another variable representing
loan denial and let us assume that this is due to an actual
legitimate causal relationship in the sense that, legitimately,
a loan is denied if the applicant has low income. Let us now
assume that we also observe high correlation between low
income and being female, which, for instance, can be due to
the fact that the women represented in the specific dataset in
analysis, tend to be underpaid. Given these settings, in the
datawewould also observe high correlation between the vari-
able gender being female and the variable representing loan
denial, due to the fact that we do not account for the presence
of the variable low income. Following common terminolo-
gies, we will say that such situations are due to spurious
correlations.

However, the picture is even more complicated: it could
be the case, in fact, that being female is the actual cause of
the low income and, hence, be the indirect cause of loan
denial through low income. This would represent a causal
relationship between the gender and the loan denial, that we
would like to detect as discrimination. Disentangling these
two different cases, i.e., female is only correlated with low
income in a spurious way, or being female is the actual cause
of low income, is at the same time important and challenging.
This highlights the need for a principled causal approach to
discrimination detection.

Another typical pitfall of correlation-based reasoning is
expressed by what is known as Simpson’s paradox3 accord-
ing to which, correlations observed in different groups might
disappear when these heterogeneous groups are aggregated,
leading to false-positive cases of discrimination discovery.
One of the most famous false-positive examples due to
Simpson’s paradox occurred when in 1973 the University
of California, Berkeley, was sued for discrimination against
women who had applied for admission to graduate schools.
In fact, by looking at the admissions of 1973, it first appeared
that men applying were significantly more likely to be admit-
ted than women. But later, by examining the individual
departments carefully, it was discovered that none of them
was significantly discriminating against women. On the con-
trary, most departments had exercised a small bias in favor
of women. The apparent discrimination was due to the fact

3 http://en.wikipedia.org/wiki/Simpson’s_paradox.
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that women tended to apply to departments with lower rates
of admission, while men tended to apply to departments with
higher rates [1]. Later in Sect. 6.6wewill use the dataset from
this episode to highlight the differences between correlation-
based and causation-based methods.

Another very recent example is the scientific “debate” on
PNAS (December 2015) where Volker and Steenbeek [43]
reacted to a previous article of Van der Lee and Ellemers
[42] which analyzed data about research grant in the Nether-
lands and claimed a gender bias. In their reaction, Volker
and Steenbeek state that the overall gender effect borders
on statistical significance and that the conclusion of Van der
Lee and Ellemers could be a prime example of Simpson’s
paradox. This example again highlights the importance, time-
liness, and hardness of discrimination detection and the need
for principled causal approaches.

Our proposal and contributions. In this paper, we take
a principled causal approach to the data mining problem
of discrimination detection in databases. Following Suppes’
probabilistic causation theory [13,41], we define a method
to extract, from a dataset of historical decision records, the
causal structures existing among the attributes in the data.

In particular, we define the Suppes-Bayes causal net-
work (SBCN), i.e., a directed acyclic graph (dag) where
we have a node representing a Bernulli variable of the type
〈attribute = value〉 for each pair attribute value present in
the database. In this dag an arc (A, B) represents the exis-
tence of a causal relation between A and B (i.e., A causes
B). Moreover, each arc is labeled with a score, representing
the strength of the causal relation.

Our SBCN is a constrained Bayesian network recon-
structed bymeans of maximum likelihood estimation (MLE)
from the given database, where we force the conditional
probability distributions induced by the reconstructed graph
to obey Suppes’ constraints, i.e., temporal priority and
probability rising. Imposing Suppes’ temporal priority and
probability raising, we obtain what we call the prima facie
causes graph [41], which might still contain spurious causes
(false positives). In order to remove these spurious causes,
we add a bias term to the likelihood score, favoring sparser
causal networks: in practice, we sparsify the prima facie
causes graph by extracting a minimal set of edges which
best explain the data. This regularization is done by means
of the Bayesian information criterion (BIC) [40].

The obtained SBCN provides a clear summary, amenable
to visualization, of the probabilistic causal structures found
in the data. Such structures can be used to reason about dif-
ferent types of discrimination. In particular, we show how
using several random-walk-based methods, where the next
step in the walk is chosen proportionally to the edge weights,
we can address different anti-discrimination legal concepts.
This stepmakesSBCN a very general tool for discrimination

detection. Our experiments show that the measures of dis-
crimination produced by our methods are very strong, almost
binary, signals: our measures are very clearly separating the
discrimination and the non-discrimination cases.

To the best of our knowledge, this is the first proposal
of discrimination detection in databases grounded in proba-
bilistic causal theory.

1.4 Roadmap

The rest of the paper is organized as follows. In the next sec-
tion,we provide somebasic definitions of discrimination, and
then in Sect. 3, we discuss the state of the art in discrimina-
tion detection in databases. In Sect. 4, we formally introduce
the SBCN and present the method for extracting such causal
network from the input dataset. In Sect. 5, we show how
to exploit the SBCN for different concepts of discrimination
detection, bymeans of random-walk-basedmethods. Finally,
Sect. 6 presents our experimental assessment and comparison
with correlation-based methods on four real-world datasets.

2 Definitions of discrimination

Different technical definitions of discrimination are based
on different legal principles. Differently from privacy leg-
islation, anti-discrimination legislation is very diverse and
includes different legal concepts, e.g., direct and indirect dis-
crimination, group and individual discrimination and the so-
called genuine occupational requirement. Here, we present
the detailed definitions of different anti-discrimination legal
concepts that will be addressed by our methods in Sect. 5.

2.1 Group discrimination

According to current legislation, discrimination occurs when
a group is treated “less favorably” [20] than others, or when
“a higher proportion of people not in the group is able
to comply” [21] with a qualifying criterium. Thus, groups
discrimination reflects the structural bias against groups.
It is also known as inequality of outcomes or disparate
impact. To quantify the degree of group discrimination,
several discrimination measures have been defined over a
fourfold contingency table [31], as shown in Fig. 1, where:
the protected group is a social group which is suspected of
being discriminated against; the decision is a binary attribute
recording whether a benefit was granted (value “+”) or not
(value “−”) to an individual; the total population denotes a
context of possible discrimination, such as individuals from
a specific city, job sector, income, or combination thereof.

Different outcomes between groups aremeasured in terms
of the proportion of people in each group with a specific out-

123



4 Int J Data Sci Anal (2017) 3:1–21

decision
group - +

protected a b n1
unprotected c d n2

m1 m2 n

p1 = a/n1
p2 = c/n2
p= m1/n
RR= p1

p2
RD= p1− p2

Fig. 1 Discrimination contingency table

come. Figure 1 considers the proportions of benefits denied
to the protected group (p1), the unprotected group (p2),
and the overall population (p). Differences or rates of these
proportions can model the legal principle of group underrep-
resentation of the protected group in positive outcomes or,
equivalently, of overrepresentation in negative outcomes.

Once provided with a threshold α between “legal” and
“illegal” degree of discrimination, we can isolate contexts of
possible discrimination [39].

2.2 Individual discrimination

Individual discrimination occurs when an individual treated
differently because of his/her sensitive features such as race,
color, religion, nationality, sex, marital status, age, and preg-
nancy. In other words, individual discrimination occurs if
individuals with similar abilities (qualifications) are treated
differently [7,25]. Individual discrimination requires to mea-
sure the amount of discrimination for a specific individual,
i.e., an entire record in the database. For an individual record
r in original data table D, individual discrimination quanti-
fies as follows [25]:

diff(r) = px − py,

where px is the proportions of benefits denied to the protected
group in the 2k closest neighborhoods of r and py is the
proportions of benefits denied to the unprotected group in
the 2k closest neighborhoods of r . As observed by Dwork et
al. [7] and others, removing group discrimination does not
prevent discrimination at an individual level. This highlights
the need for measuring and accessing discrimination at an
individual level.

2.3 Favoritism

Favoritism refers to the case of an individual treated bet-
ter than others for reasons not related to individual merit or
business necessity: for instance, favoritism in the workplace
might result in a person being promoted faster than others
unfairly.

2.4 Indirect discrimination

The European Union Legislation [21] provides a broad def-
inition of indirect discrimination as occurring “where an

apparently neutral provision, criterion, or practice would put
persons of a racial or ethnic origin at a particular disad-
vantage compared with other persons.” In other words, the
actual result of the apparently neutral provision is the same
as an explicitly discriminatory one. A typical legal case study
of indirect discrimination is concerned with redlining: e.g.,
denying a loan because of ZIP code, which in some areas is
an attribute highly correlated to race. Therefore, even if the
attribute race cannot be required at loan application time (thus
would not be present in the data), still race discrimination is
perpetrated.

2.5 Genuine requirement

The legal concept of genuine requirement refers to detect-
ing that part of the discrimination which may be explained
by other, legally grounded, attributes; for example, denying
credit to women may be explainable by the fact that most of
them have low salary or delay in returning previous credits.
A typical example in the literature is the one of the “genuine
occupational requirement,” also called “business necessity”
in [8,22].

3 Related work

Discrimination analysis is a multi-disciplinary problem,
involving sociological causes, legal reasoning, economic
models, and statistical techniques [5,36]. Some authors
[11,17] study how to prevent data mining from becoming
itself a source of discrimination. In this paper, instead we
focus on the data mining problem of detecting discrimina-
tion in a dataset of historical decision records, and in the rest
of this section, we present the most relevant literature.

Pedreschi et al., see [30,31] and [39], propose a tech-
nique based on extracting classification rules (inductive part)
and ranking the rules according to some legally grounded
measures of discrimination (deductive part). The result is a
(possibly large) set of classification rules, providing local and
overlapping niches of possible discrimination. This model
only deals with group discrimination.

Luong et al. [25] exploit the idea of situation-testing [37]
to detect individual discrimination. For each member of the
protected group with a negative decision outcome, testers
with similar characteristics (k-nearest neighbors) are consid-
ered. If there are significantly different decision outcomes
between the testers of the protected group and the testers of
the unprotected group, the negative decision can be ascribed
to discrimination.

Zliobaite et al. [45] focus on the concept of genuine
requirement to detect that part of discrimination which may
be explained by other, legally grounded, attributes. In [7],
Dwork et al. address the problem of fair classification that
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achieves both group fairness, i.e., the proportion of mem-
bers in a protected group receiving positive classification is
identical to the proportion in the population as a whole, and
individual fairness, i.e., similar individuals should be treated
similarly.

The above approaches assume that the dataset under anal-
ysis contains attributes that denote protected groups (i.e.,
direct discrimination). This may not be the case when such
attributes are not available, or not even collectible at a micro-
data level as in the case of the loan applicant’s race. In these
cases, we talk about indirect discrimination discovery. Rug-
gieri et al. [29,38] adopt a form of rule inference to cope
with the indirect discovery of discrimination. The correla-
tion information is called background knowledge and is itself
coded as an association rule.

Mancuhan and Clifton [26] propose Bayesian networks
as a tool for discrimination discovery. Bayesian networks
consider the dependence between all the attributes and use
these dependencies in estimating the joint probability dis-
tribution without any strong assumption, since a Bayesian
network graphically represents a factorization of the joint
distribution in terms of conditional probabilities encoded in
the edges. Although Bayesian networks are often used to
represent causal relationships, this needs not be the case; in
fact, a directed edge from two nodes of the network does not
imply any causal relation between them.As an example, let us
observe that the two graphs A → B → C and C → B → A
impose exactly the same conditional independence require-
ments and, hence, any Bayesian network would not be able
to disentangle the direction of any causal relationship among
these events.

Our work departs from this literature as:

1. It is grounded in probabilistic causal theory instead of
being based on correlation;

2. It proposes a holistic approach able to deal with different
types of discrimination in a single unifying framework,
while the methods in the state of the art usually deal with
one and only one specific type of discrimination;

3. It is the first work to adopt graph theory and social
network analysis concepts, such as random-walk-based
centrality measures and community detection, for dis-
crimination detection.

Our proposal has also lower computational cost thanmethods
such as [30,31] and [39] which require computing a poten-
tially exponential number of association/classification rules.

4 Suppes-Bayes causal network

Theories of causality are old and enjoy contributions from
many fields. Some of the most prominent results are due to

Judea Pearl [28], whose theories have been of great impact in
the computational community. However, algorithms derived
from this theorymay result to be computationally intractable.
For this reason, in this paper we follow a different approach
based on the theory of probabilistic causation by Patrick Sup-
pes [13] which we combine with state-of-the-art Bayesian
learning approach, in order to build an effective method but
still keeping its complexity tractable. More details about dif-
ferent approaches to evaluate causal claims and justification
of our choice are presented in Appendix.

In order to study discrimination as a causal inference
problem, we exploit the criteria defined in the theories of
probabilistic causation [13]. In particular, we follow [41],
where Suppes proposed the notion of prima facie causation
that is at the core of probabilistic causation. Suppes’ def-
inition is based on two pillars: (i) any cause must happen
before its effect (temporal priority) and (ii) it must raise the
probability of observing the effect (probability raising).

Definition 1 (Probabilistic causation [41]) For any two
events h and e, occurring, respectively, at times th and te,
under the mild assumptions that 0 < P(h), P(e) < 1, the
event h is called a prima facie cause of the event e if it occurs
before the effect and the cause raises the probability of the
effect, i.e., th < te and P(e | h) > P(e | ¬h) .

In the rest of this section, we introduce our method to
construct, from a given relational table D, a type of causal
Bayesian network constrained to satisfy the conditions dic-
tated by Suppes’ theory, which we dub Suppes-Bayes causal
network (SBCN).

In the literature, many algorithms exist to carry out
structural learning of general Bayesian networks and they
usually fall into two families [19]. The first family, constraint
based learning, explicitly tests for pairwise independence
of variables conditioned on the power set of the rest of the
variables in the network. These algorithms exploit struc-
tural conditions defined in various approaches to causality
[13,15,18,27,28,44]. The second family, score-based learn-
ing, constructs a network which maximizes the likelihood
of the observed data with some regularization constraints to
avoid overfitting. Several hybrid approaches have also been
recently proposed [2,24,34].

Our framework can be considered a hybrid approach
exploiting constrained maximum likelihood estimation
(MLE) as follows: (i) we first define all the possible causal
relationship among the variables in D by considering only
the oriented edges between events that are consistent with
Suppes’ notion of probabilistic causation and, subsequently,
(i i) we perform the reconstruction of the SBCN by a score-
based approach (using BIC), which considers only the valid
edges.

We next present in details the whole learning process.

123



6 Int J Data Sci Anal (2017) 3:1–21

4.1 Suppes’ constraints

We start with an input relational table D defined over a set A
of h categorical attributes and s samples. In case continuous
numerical attributes exist in D, we assume they have been
discretized to become categorical. From D, we derive D′, an
m × s binary matrix representing m Bernoulli variables of
the type 〈attribute = value〉, where an entry is 1 if we have
an observation for the specific variable and 0 otherwise.

4.1.1 Temporal priority

The first constraint, temporal priority, cannot be simply
checked in the data as we have no timing information for
the events. In particular, in our context the events for which
we want to reason about temporal priority are the Bernoulli
variables 〈attribute = value〉.

The idea here is that, e.g., income = low cannot be a
cause of gender = f emale, because the time when the
gender of an individual is determined is antecedent to that
of when the income is determined. This intuition is imple-
mented by simply letting the data analyst provide as input
to our framework a partial temporal order r : A → N for
the h attributes, which is then inherited from the m Bernoulli
variables4.

Based on the input dataset D and the partial order r , we
produce the first graph G = (V, E) where we have a node
for each of the Bernoulli variables, so |V | = m, and we have
an arc (u, v) ∈ E whenever r(u) ≤ r(v). This way we will
immediately rule out causal relations that do not satisfy the
temporal priority constraint.

4.1.2 Probability raising

Given the graphG = (V, E)built as described above the next
step requires pruning the arcs which do not satisfy the second
constraint, probability raising, thus building G ′ = (V, E ′),
where E ′ ⊆ E . In particular, we remove from E each arc
(u, v) such that P(v | u) ≤ P(v | ¬u). The graph G ′ so
obtained is called prima facie graph.

We recall that the probability raising condition is equiva-
lent to constraining for positive statistical dependence [24]:
in the prima facie graph we model all and only the posi-
tive correlated relations among the nodes already partially
ordered by temporal priority, consistent with Suppes’ char-
acterization of causality in terms of relevance.

4 Note that our learning technique requires the input order r to be correct
and complete in order to guarantee its convergence. Nevertheless, if this
is not the case, it is still capable of providing valuable insights about the
underlying causal model, although with the possibility of false-positive
or false-negative causal claims.

4.2 Network simplification

Suppes’ conditions are necessary but not sufficient to evalu-
ate causation [34]: especially when the sample size is small,
the model may have false positives (spurious causes), even
after constraining for Suppes’ temporal priority and probabil-
ity raising criteria (which aim at removing false negatives).
Consequently, although we expect all the statistically rele-
vant causal relations to be modeled in G ′, we also expect
some spurious ones in it.

In our proposal, in place of other structural conditions
used in various approaches to causality (see, e.g., [13,27,
44]), we perform a network simplification (i.e., we sparsify
the network by removing arcs) with a score-based approach,
specifically by relying on the Bayesian information criterion
(BIC) as the regularized likelihood score [40].

We consider as inputs for this score the graph G ′ and the
dataset D′. Given these, we select the set of arcs E∗ ⊆ E ′
that maximizes the score:

scoreBIC(D′, G ′) = L L(D′|G ′) − log s

2
dim(G ′).

In the equation, G ′ denotes the graph, D′ denotes the data,
s denotes the number of samples, and dim(G ′) denotes the
number of parameters in G ′. Thus, the regularization term
−dim(G ′) favors graphs with fewer arcs. The coefficient
log s/2 weighs the regularization term, such that the higher
the weight, the more sparsity will be favored over “explain-
ing” the data through maximum likelihood. Note that the
likelihood is implicitly weighted by the number of data
points, since each point contributes to the score.

Assume that there is one true (but unknown) probabil-
ity distribution that generates the observed data, which is,
eventually, uniformly randomly corrupted by false positives
and negatives rates (in [0, 1)). Let us call correct model,
the statistical model which best approximate this distribu-
tion. The use of BIC on G ′ results in removing the false
positives and, asymptotically (as the sample size increases),
converges to the correct model. In particular, BIC is attempt-
ing to select the candidatemodel corresponding to the highest
Bayesian Posterior probability, which can be proved to be
equivalent to the presented score and its log(s) penalization
factor.

We denote with G∗ = (V, E∗) the graph that we obtain
after this step.We note that, as for general Bayesian network,
G∗ is a dag by construction.

4.3 Confidence score

Using the reconstructed SBCN, we can represent the proba-
bilistic relationships between any set of events (nodes). As an
example, suppose to consider the nodes representing, respec-
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0.178

0.328

0.172

0.6110.492

native_country_India

0.213

0.129

Fig. 2 One portion of the SBCN extracted from the Adult dataset. This subgraph corresponds to the C2 community reported later in Table 3
(Sect. 6) extracted by a community detection algorithm

tively, income = low and gender = f emale being the only
two direct causes (i.e., with arcs toward) of loan = denial.
Given SBCN, we can estimate the conditional probabilities
for each node in the graph, i.e., probability of loan = denial
given income = low AN D gender = f emale in the exam-
ple, by computing the conditional probability of only the
pair of nodes directly connected by an arc. For an overview
of state-of-the-art methods for doing this, see [19]. How-
ever, we expect to be mostly dealing with full data, i.e.,
for every directly connected node in the SBCN, we expect
to have several observations of any possible combination
attribute = value. For this reason, we can simply esti-
mate the node probabilities by counting the observations in
the data. Moreover, we will exploit such conditional proba-
bilities to define the confidence score of each arc in terms of
their causal relationship.

In particular, for each arc (v, u) ∈ E∗ involving the causal
relationship between two nodes u, v ∈ V , we define a con-
fidence score W (v, u) = P(u | v) − P(u | ¬v), which,
intuitively, aims at estimating the observations where the
cause v is followed by its effect u, that is, P(u | v), and the
ones where this is not observed, i.e., P(u | ¬v), because of
imperfect causal regularities. We also note that, by the con-
straints discussed above, we require P(u | v) 
 P(u | ¬v)

and, for this reason, eachweight is positive and no larger than
1, i.e., W : E∗ → (0, 1].

Combining all of the concepts discussed above, we con-
clude with the following definition.

Definition 2 (Suppes-Bayes causal network) Given an input
dataset D′ of m Bernoulli variables and s samples, and given

a partial order r of the variables, the Suppes-Bayes causal
network SBCN = (V, E∗, W ) subsumed by D′ is aweighted
dag such that the following requirements hold:

• [Suppes’ constraints] for each arc (v, u) ∈ E∗ involving
the causal relationship between nodes u, v ∈ V , under
the mild assumptions that 0 < P(u), P(v) < 1:

r(v) ≤ r(u) and P(u | v) > P(u | ¬v) .

• [Simplification] let E ′ be the set of arcs satisfying the
Suppes’ constraints as before; among all the subsets of
E ′, the set of arcs E∗ is the one whose corresponding
graph maximizes BIC:

E∗ = argmaxE⊆E ′,G=(V,E)(L L(D′|G) − log s

2
dim(G)) .

• [Score] W (v, u) = P(u | v)−P(u | ¬v), ∀(v, u) ∈ E∗

An example of a portion of a SBCN extracted from a
real-world dataset is reported in Fig. 2.

Algorithm 1 summarizes the learning approach adopted
for the inference of the SBCN . Given D′ an input
dataset over m Bernoulli variables and s samples, and r
a partial order of the variables, Suppes’ constraints are
verified (Lines 4–9) to construct a dag as described in
Sect. 4.1.

The likelihood fit is performed by hill climbing (Lines 12–
21), an iterative optimization technique that starts with an
arbitrary solution to a problem (in our case an empty graph)
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and then attempts to find a better solution by incrementally
visiting the neighborhood of the current one. If the new can-
didate solution is better than the previous one it is considered
in place of it. The procedure is repeated until the stopping
criterion is matched.

The !StoppingCriterion occurs (Line 12) in two situa-
tions: (i) the procedure stops when we have performed a
large enough number of iterations or (ii) it stops when
none of the solutions in Gneighbors is better than the cur-
rent Gfit. Note that Gneighbors denotes all the solutions that
are derivable from Gfit by removing or adding at most one
edge.

Algorithm 1 Learning the SBCN
1: Inputs: D′ an input dataset of m Bernoulli variables and s samples,

and r a partial order of the variables
2: Output: SBCN(V, E∗, W ) as in Definition 2
3: [Suppes’ constraints]
4: for all pairs (v, u) among the m Bernoulli variables do
5: if r(v) ≤ r(u) and P(u | v) > P(u | ¬v) then
6: add the arc (v, u) to SBC N .
7: end if
8: end for
9: [Likelihood fit by hill climbing]
10: Consider G(V, E∗, W ) f i t = ∅.
11: while !StoppingCriterion() do
12: Let G(V, E∗, W )neighbors be the neighbor solutions of

G(V, E∗, W ) f i t .
13: Remove from G(V, E∗, W )neighbors any solution whose arcs are

not included in SBCN.
14: Consider a random solution Gcurrent in G(V, E∗, W )neighbors .
15: if scoreB I C (D′, Gcurrent) > scoreB I C (D′, G f it ) then
16: G f it = Gcurrent.
17: ∀ arc (v, u) of G f it , W (v, u) = P(u | v) − P(u | ¬v).
18: end if
19: end while
20: SBCN = G f it .
21: return SBCN.

4.3.1 Time and space complexity

The computation of the valid dag according to Suppes’ con-
straints (Lines 4–10) requires a pairwise calculation among
the m Bernoulli variables. After that, the likelihood fit by
hill climbing (Lines 11–21) is performed. Being an heuris-
tic, the computational cost of hill climbing depends on the
stopping criterion. However, constraining by Suppes’ crite-
ria tends to regularize the problem leading on average to a
quick convergence to a good solution. The time complexity
of Algorithm 1 is O(sm) and the space required is O(m2),
where m, however, is usually not too large, being the number
of attribute-value pairs, and not the number of examples.

4.4 Expressivity of a SBCN

We conclude this section with a discussion on the causal
relations that we model by a SBCN.

Let us assume that there is one true (but unknown) prob-
ability distribution that generates the observed data whose
structure can be modeled by a dag. Furthermore, let us
consider the causal structure of such a dag and let us also
assume each node with more then one cause to have conjunc-
tive parents: any observation of the child node is preceded
by the occurrence of all its parents. As before we call cor-
rect model, the statistical model which best approximates the
distribution. On these settings, we can prove the following
theorem.

Theorem 1 Let the sample size s → ∞, the provided partial
temporal order r be correct and complete and the data be
uniformly randomly corrupted by false-positive and false-
negative rates (in [0, 1)), then the SBC N inferred from the
data is the correct model.

Proof (Sketch) Let us first consider the case where the
observed data have no noise. On such an input, we observe
that the prima facie graph has no false negatives: in fact
∀[c → e] modeling a genuine causal relation, P(e ∧ c) =
P(e), thus the probability raising constraint is satisfied, so it
is the temporal priority given that we assumed r to be correct
and complete.

Furthermore, it is known that the likelihood fit performed
by B I C converges to a class of structures equivalent in terms
of likelihood among which there is the correct model: all
these topologies are the same unless the directionality of
some edges. But, since we started with the prima facie graph
which is already ordered by temporal priority, we can con-
clude that in this case the SBC N coincides with the correct
model.

To extend the proof to the case of data uniformly randomly
corrupted by false positives and negatives rates (in [0, 1)), we
note that the marginal and joint probabilities change mono-
tonically as a consequence of the assumption that the noise
is uniform. Thus, all inequalities used in the preceding proof
still hold, which concludes the proof. ��

In the more general case of causal topologies where any
cause of a common effect is independent from any other
cause (i.e., we relax the assumption of conjunctive parents),
the SBC N is not guaranteed to converge to the correct model
but it coincides with a subset of it modeling all the edges
representing statistically relevant causal relations (i.e., where
the probability raising condition is verified).

123



Int J Data Sci Anal (2017) 3:1–21 9

4.5 Learning the temporal ordering of variables

Up to this point, we have described how to infer the structure
of a Suppes-Bayes causal network assuming a given partial
temporal order of the variables of the database: as an exam-
ple, the variables gender and DOB are naturally defined
earlier than education, which in turn comes earlier than
occupation. Such a partial order is essential to capture
Suppes’ condition of temporal priority.

We next discuss how to automatically infer the partial
temporal order, which allows learning the SBC N also in the
cases when it is not possible to define a priori the needed
temporal order.

We start byobserving that,while reconstructing aBayesian
Network is a known NP-hard problem, when an ordering
among the variables in the network is given, finding the max-
imum likelihood network is not NP-hard anymore [3,4]. For
this reason, we iterate our learning procedure by searching
in the ordering space rather than the space of the directed
acyclic graphs.

Intuitively, to do so we may iteratively consider all the
possible partial orderings among the nodes. Given one, we
may learn the structure of the SBCN normally, that is, by
constraining for Suppes’ probability raising and maximum
likelihood estimation over the given order. The final struc-
ture would be the one at maximum likelihood among all the
structures generated at the different possible orderings.

Obviously, given the intractability of evaluating of the
solutions in the space of the partial orderings, we need once
again to rely on some heuristic search strategy in order to per-
form this task. In particular, we will adopt the hill-climbing
(HC) schema. HC is one of the simplest iterative techniques
to solve optimizationproblems,which is basedon the concept
of neighborhood. It is a procedure that iteratively evaluates
solutions in the search space and, for each candidate valid
solution i , defines a neighborhood N (i). Given N (i), the
solution j at the subsequent iteration is searched only in
N (i). Hence, the neighborhood is a function N : S → 2S that
assigns at each solution in the search space S a (non-empty)
subset of S.

In our case, a solution is a partial order among the nodes,
described as a rank from 0 to k where one or more nodes are
associated with each position in the ranking andwhere all the
lower ranked nodes are predecessors of higher ranked ones.
Moreover, given any solution, we define its neighborhood as
the set of partial orderings that can be reached from it with
the following operations:

1. Swap: invert the order of 2 nodes;
2. Increase: subtract 1 to the rank of a node;
3. Decrease: add 1 to the rank of a node.

Given these premises, we now describe our learning pro-
cedure in Algorithm 2.

Algorithm 2 Learning the SBCN without manual temporal
ordering
1: Being D′ an input dataset of m Bernoulli variables and s samples.
2: Let SBC N (V, E∗, W ) = ∅ represent a weighted dag of the solu-

tions.
3: while !StoppingCriterion1() do
4: [Initialization]
5: if SBC N (V, E∗, W ) == ∅ then
6: Set r = rrand a random partial order of the variables.
7: else
8: Set r randomly within N (r), being the neighborhood of the

current solution.
9: end if
10: Let SBC Ncurrent (Vc, E∗

c , Wc) = ∅ represent a weighted dag of
the current solutions.

11: [Suppes’ constraints]
12: for all the arcs (v, u) between each pair of the m Bernoulli vari-

ables do
13: if r(v) ≤ r(u) and P(u | v) > P(u | ¬v) then
14: Set to the arc (v, u) its weight, being Wc(v, u) = P(u | v)−

P(u | ¬v).
15: Add the arc (v, u) to SBC Ncurrent .
16: end if
17: end for
18: [Simplification]
19: Consider G(V, E∗, W ) f i t = ∅.
20: while !StoppingCriterion2() do
21: Let G(V, E∗, W )neighbors be the neighbor solutions of

G(V, E∗, W ) f i t .
22: Remove from G(V, E∗, W )neighbors any solution whose arcs

are not included in SBC Ncurrent .
23: Consider a random solutionGcurrent inG(V, E∗, W )neighbors .
24: if scoreB I C (D′, Gcurrent ) > scoreB I C (D′, G f it ) then
25: G f it = Gcurrent .
26: Assign to the arcs of G f it the related weights of

SBC Ncurrent .
27: end if
28: end while
29: SBC Ncurrent = G f it .
30: [Update best solution]
31: if scoreB I C (SBC Ncurrent ) > scoreB I C (SBC N ) then
32: SBC N = Gcurrent .
33: end if
34: end while
35: return SBC N .

In the algorithm, !StoppingCriterion1() and
!StoppingCriterion2() occur in two situations: (i) the pro-
cedure stops when we have performed a big enough number
of iterations which is predefined or (i i) it stops when none of
the solutions in the neighborhood are better than the current
one.

Furthermore,we observed that, as forwhen the ordering of
the nodes is provided as an input, Algorithm 2 first constrains
the current solution for Suppes’ conditions (Lines 12–17)
and then performs the maximum likelihood estimation of the
DAG by hill climbing (Lines 19–29). But this time, these
steps are iterated along the neighbor orders by an outer hill-
climbing procedure (Lines 5–10 and 31–33).
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5 Discrimination discovery by random walks

In this section, we propose several random-walk-basedmeth-
ods over the reconstructed SBCN, to deal with different
discrimination-detection tasks.

5.1 Group discrimination and favoritism

As defined in Sect. 2, the basic problem in the analysis of
direct discrimination is precisely to quantify the degree of
discrimination suffered by a given protected group (e.g., an
ethnic group) with respect to a decision (e.g., loan denial). In
contrast to discrimination, favoritism refers to the case of an
individual treated better than others for reasons not related
to individual merit or business necessity. In the following,
we denote favoritism as positive discrimination in contrast
to negative discrimination.

Given anSBCN wedefine ameasure of group discrimina-
tion (either negative or positive) for each node v ∈ V . Recall
that each node represents a pair 〈attribute = value〉, so it
is essentially what we refer to as a group, e.g., 〈gender =
f emale〉. Our task is to assign a score of discrimination
ds− : V → [0, 1] to each node, so that the closer ds−(v) is
to 1 the more discriminated is the group represented by v.

We compute this score by means of a number n of random
walks that start from v and reaches either the node represent-
ing the positive decision or the one representing the negative
decision. In these random walks, the next step is chosen pro-
portionally to the weights of the outgoing arcs. Suppose a
random walk has reached a node u, and let degout(u) denote
the set of nodes whish have an arc from u. Then, the arc (u, z)
is chosen with probability

p(u, z) = W (u, z)
∑

v∈degout(u) W (u, v)
.

When a random walk ends in a node with no outgoing arc
before reaching either the negative or the positive decision,
it is restarted from the source node v.

Definition 3 (Group discrimination score) Given an SBCN
= (V, E∗, W ), let δ− ∈ V and δ+ ∈ V denote the nodes
indicating the negative and positive decision, respectively.
Given a node v ∈ V , and a number n ∈ N of randomwalks to
be performed, we denote as rwv→δ− the number of random
walks started at node v that reach δ− earlier than δ+. The
discrimination score for the group corresponding to node v

is then defined as

ds−(v, δ−) = rwv→δ−

n
.

This implicitly also defines a score of positive discrimination
(or favoritism): ds+(v, δ+) = 1 − ds−(v, δ−).

Taking advantage of the SBCN we also propose two
additional measures capturing how far a node representing a
group is from the positive and negative decision, respectively.
This is done by computing the average number of steps that
the random walks take to reach the two decisions: we denote
these scores as as−(v) and as+(v).

5.2 Indirect discrimination

A typical legal case study of indirect discrimination is con-
cerned with redlining, e.g., denying a loan because of ZIP
code, which in some areas is an attribute highly correlated
with race. Therefore, even if the attribute race cannot be
required at loan application time (thus would not be present
in the data), still race discrimination is perpetrated. Indirect
discrimination discovery refers to the data mining task of
discovering the attributes values that can act as a proxy to
the protected groups and lead to discriminatory decisions
indirectly [11,30,31]. In our setting, indirect discrimination
can be detected by applying the same method described in
Sect. 5.1.

5.3 Genuine requirement

In the state of the art of data mining methods for discrimina-
tion discovery, it is also known as explainable discrimination
[12] and conditional discrimination [45].

The task here is to evaluate to which extent the discrimina-
tion apparent for a group is “explainable” on a legal ground.
Let v ∈ V be the node representing the group which is sus-
pected of being discriminated, and ul ∈ V be a node whose
causal relation with a negative or positive decision is legally
grounded. As before, δ− and δ+ denote the negative and
positive decision, respectively. Following the same random-
walk process described in Sect. 5.1, we define the fraction of
explainable discrimination for the group v:

fed−(v, δ−) = rwv→ul→δ−

rwv→δ−
,

i.e., the fraction of randomwalks passing troughul among the
ones started inv and reaching δ− earlier than δ+. Similarlywe
define fed+(v, δ+), i.e., the fraction of explainable positive
discrimination.

5.4 Individual and subgroup discrimination

As defined in Sect. 2, individual discrimination requiresmea-
suring the amount of discrimination for a specific individual,
i.e., an entire record in the database. Similarly, subgroup
discrimination refers to discrimination against a subgroup
described by a combination of multiple protected and non-
protected attributes: personal data, demographics, social,
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economic and cultural indicators, etc. For example, consider
the case of gender discrimination in credit approval: although
an analyst may observe that no discrimination occurs in gen-
eral, it may turn out that older women obtain car loans only
rarely.

Both problems can be handled by generalizing the tech-
nique introduced in Sect. 5.1 to deal with a set of starting
nodes, instead of only one. Given an SBC N = (V, E∗, W )

let v1, . . . , vn be the nodes of interest. In order to define a
discrimination score for v1, . . . , vn , we perform a personal-
ized PageRank [16] computation with respect to v1, . . . , vn .
In personalized PageRank, the probability of jumping to a
node when abandoning the random walk is not uniform, but
it is given by a vector of probabilities for each node. In our
case, the vector will have the value 1

n for each of the nodes
v1, . . . , vn ∈ V and zero for all the others. The output of
personalized PageRank is a score ppr(u|v1, . . . , vn) of prox-
imity/relevance to {v1, . . . , vn} for each other node u in the
network. In particular, we are interested in the score of the
nodes representing the negative and positive decision, i.e.,
ppr(δ−|v1, . . . , vn) and ppr(δ+|v1, . . . , vn), respectively.

Definition 4 (Generalized discrimination score) Given an
SBC N = (V, E∗, W ), let δ− ∈ V and δ+ ∈ V denote the
nodes indicating the negative and positive decision, respec-
tively. Given a set of nodes v1, . . . , vn ∈ V , we define the
generalized (negative) discrimination score for the subgroup
or the individual represented by {v1, . . . , vn} as

gds−(v1, . . . , vn, δ−, δ+)

= ppr(δ−|v1, . . . , vn)

ppr(δ−|v1, . . . , vn) + ppr(δ+|v1, . . . , vn)
.

This implicitly also defines a generalized score of pos-
itive discrimination: gds+(v1, . . . , vn, δ−, δ+) = 1 −
gds−(v1, . . . , vn, δ−, δ+).

6 Experimental evaluation

This section reports the experimental evaluation of our
approach on four datasets,Adult,German credit andCensus-
income from the UCI Repository of machine learning
databases5, and Berkeley Admissions Data from [10]. These
are well-known real-life datasets typically used in
discrimination-detection literature.

– Adult consists of 48,842 tuples and 10 attributes, where
each tuple corresponds to an individual and it is described
by personal attributes such as age, race, sex, relationship,
education, and employment. Following the literature, in

5 http://archive.ics.uci.edu/ml.

order to define the decision attribute we use the income
levels,≤50K (negative decision) or>50K (positive deci-
sion). We use four levels in the partial order for temporal
priority: age, race, sex, and native country are defined in
the first level; education, marital status, and relationship
are defined in the second level; occupation andwork class
are defined in the third level, and the decision attribute
(derived from income) is the last level.

– German credit consists of 1000 tuples with 21 attributes
on bank account holders applying for credit. The decision
attribute is based on repayment history, i.e., whether the
customer is labeled with good or bad credit risk. Also
for this dataset, the partial order for temporal priority
has four orders. Personal attributes such as gender, age,
and foreign worker are defined in the first level. Personal
attributes such as employment status and job status are
defined in the second level. Personal properties such as
savings status and credit history are defined in the third
level, and finally, the decision attribute is the last level.

– Census-income consists of 299,285 tuples and 40
attributes, where each tuple corresponds to an individ-
ual and it is described by demographic and employment
attributes such as age, sex, relationship, education, and
employment. Similar to Adult dataset, the decision
attribute is the income levels and we define four levels in
the partial order for temporal priority.

Building the SBCN just takes a handful of seconds in Ger-
man credit and Adult, and few minutes in Census-income
on a commodity laptop. The main characteristics of the
extracted SBCN are reported in Table 1. As discussed in
Introduction, we also use the dataset from the famous 1973
episode at University of California at Berkeley, in order
to highlight the differences between correlation-based and
causation-based methods.

– Berkeley Admissions Data consist of 4,486 tuples and
three attributes, where each tuple corresponds to an indi-
vidual and it is described by the gender of applicants and
the department that they apply for it. For this dataset,
the partial order for temporal priority has three orders.
Gender is defined in the first level, department in the sec-
ond level, and finally, the decision attribute in the last
level. Table 2 is a three-way table that presents admis-
sions data at the University of California, Berkeley, in
1973 according to the variables department (A, B, C,
D, E), gender (male, female), and outcome (admitted,
denied). The table is adapted from data in the text by
Freedman et al. [10].
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Table 1 SBCN main
characteristics

Dataset |V | |A| avgDeg maxInDeg maxOutDeg

Adult 92 230 2.5 7 19

German credit 73 102 1.39 3 7

Census-income 386 1426 3.69 8 54

Table 2 Berkeley admission data

Male Female Department

Admitted Denied Admitted Denied

512 313 89 19 A

313 207 17 8 B

120 205 202 391 C

138 279 131 244 D

53 138 94 299 E

22 351 24 317 F

6.1 Community detection on the SBCN

Given that our SBCN is a directed graphwith edgeweight, as
a first characterization we try to partition it using a random-
walk-based community detection algorithm, called Walktrap
and proposed in [32], whose unique parameter is the maxi-
mum number of steps in a random walk (we set it to 8), and
which automatically identifies the right number of commu-
nities. The idea is that short random walks tend to stay in
the same community (densely connected area of the graph).
Using this algorithm over the reconstructed SBCN from
Adult dataset, we obtain 5 communities: two larger ones and
three smaller ones (reported in Table 3). Interestingly, the
two larger communities seem built around the negative (C1)
and the positive (C2) decisions.

Figure 2 in Sect. 4 shows the subgraph of the SBCN cor-
responding toC2 (that we can call, the favoritism cluster): we
note that such cluster also contains nodes such as sex_Male,
age_old, relationship_Husband. The other large commu-
nity C1 can be considered the discrimination cluster: beside
the negative decision it contains other nodes representing
disadvantaged groups such as sex_Female, age_young,
race_Black, marital_status_Never_married. This good
separability of the SBCN in the two main clusters of dis-
crimination and favoritism highlights the goodness of the
causal structure captured by the SBCN.

6.2 Group discrimination and favoritism

We next focus on assessing the discrimination score ds− we
defined in Sect. 5.1, as well as the average number of steps
that the random walks take to reach the negative and positive
decisions, denote as−(v) and as+(v) respectively.

Tables 4, 5, and 6 report the top-5 and bottom-5 nodes
w.r.t. the discrimination score ds−, for datasets Adult, Ger-
man and Census-income, respectively. The first and most
important observation is that our discrimination score pro-
vides a very clear signal, with some disadvantaged groups
having very high discrimination score (equal to 1 or very
close), and similarly clear signals of favoritism, with groups
having ds−(v) = 0, or equivalently ds+(v) = 1.This ismore
clear in the Adult dataset, where the positive and negative
decisions are artificially derived from the income attribute.
In the German credit dataset, which is more realistic as
the decision attribute is truly about credit, both discrimina-
tion and favoritism are less palpable. This is also due to the
fact that German credit contains less proper causal rela-
tions, as reflected in the higher sparsity of the SBCN. A
consequence of this sparsity is also that the random walks
generally need more steps to reach one of the two deci-
sions. In Census-income dataset, we observe favoritism
with respect to married and asian_pacific individuals.

6.3 Genuine requirement

We next focus on genuine requirement (or explainable dis-
crimination). Table 7 reports some examples of fraction of
explainable discrimination (both positive and negative) on
the Adult dataset. We can see how some fractions of dis-
crimination against protected groups can be “explained” by
intermediate nodes such as having a low education profile, or
a simple job. In case these intermediate nodes are considered
legally grounded, then one cannot easily file a discrimination
claim.

Similarly, we can observe that the favoritism toward
groups such as married men, is explainable, to a large extent,
by higher education and goodworking position, such asman-
agerial or executive roles.

6.4 Subgroup and individual discrimination

We next turn our attention to subgroup and individual dis-
crimination discovery. Here the problem is to assign a score
of discrimination not to a single node (a group), but to mul-
tiple nodes (representing the attributes of an individual or
a subgroup of citizens). In Sect. 5.4, we have introduced
based on the PageRank of the positive and negative deci-
sion, ppr(δ+) and ppr(δ−), respectively, personalized on
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Table 3 Communities found in
the SBCN extracted from the
Adult dataset by Walktrap [32]

C1

negative_dec, wc:Private, ed:Some_college, ed:Assoc_acdm,

ms:Never_married, ms:Divorced, ms:Widowed,

ms:Married_AF_spouse, oc:Sales, oc:Other_service,

oc:Priv_house_serv, re:Own_child, re:Not_in_family, re:Wife,

re:Unmarried, re:Other_relative, ra:Black, oc:Armed_Forces,

oc:Handlers_cleaners, oc:Tech_support, oc:Transport_moving,

ed:7th_8th, ed:10th, ed:12th, ms:Separated,

ed:HS_grad,ed:11th, nc:Outlying_US_Guam_USVI_etc,

nc:Haiti, ag:young, sx:Female, ra:Amer_Indian_Eskimo,

nc:Trinadad_Tobago, nc:Jamaica, oc:Machine_op_inspct,

ms:Married_spouse_absent, oc:Adm_clerical,

C2

positive_dec, oc:Prof_specialty, wc:Self_emp_not_inc,

ms:Married_civ_spouse, oc:Craft_repair,oc:Protective_serv,

re:Husband, ed:Prof_school, wc:Self_emp_inc,

ag:old , wc:Local_gov, oc:Exec_managerial,

ed:Bachelors, ed:Assoc_voc, ed:Masters, wc:Never_worked,

wc:State_gov, ed:Doctorate, sx:Male, nc:India, nc:Cuba

C3

oc:Farming_fishing, wc:Without_pay, nc:Mexico, nc:Canada,

nc:Italy, nc:Guatemala, nc:El_Salvador, ra:White,

nc:Poland, ed:1st_4th, ed:9th,ed:Preschool, ed:5th_6th

C4

nc:Iran, nc:Puerto_Rico, nc:Dominican_Republic,

nc:Columbia, nc:Peru, nc:Nicaragua, ra:Other

C5

nc:Philippines, nc:Cambodia, nc:China, nc:South,

nc:Japan, nc:Taiwan, nc:Hong, nc:Laos, nc:Thailand,

nc:Vietnam, ra:Asian_Pac_Islander

In the table, the attributes are shortened as in parenthesis: age (ag), education (ed), marital_status (ms),
native_country (nc), occupation (oc), race(ra), relationship (re), sex (sx), workclass (wc)

Table 4 Top-5 and bottom-5 groups by discrimination score ds−(v) in
Adult dataset

ds−(v) as−(v) as+(v)

relationship_Unmarried 1 1.164 –

marital_status_Never_married 0.996 1.21 2.14

age_Young 0.995 2.407 3.857

race_Black 0.994 2.46 4.4

sex_Female 0.98 2.60 3.76

relationship_Husband 0 – 2

marital_status_Married_civ_spouse 0 – 2.06

sex_Male 0 – 3.002

native_country_India 0.002 4.0 3.25

age_Old 0.018 2.062 2.14

the nodes of interest. Figure 3 presents a scatter plot of
ppr(δ+) versus ppr(δ−) for each individual in the German
credit dataset.We can observe the perfect separation between
individuals corresponding to a high personalized PageRank
with respect to the positive decision, and those associated
with a high personalized PageRank relative to the negative
decision.

Such good separation is also reflected in the generalized
discrimination score (Definition 4) that we obtain by com-
bining ppr(δ+) versus ppr(δ−).

In Fig. 4, we report the distribution of the generalized
discrimination score gds− for the population of theGerman
credit dataset: we can make a note of the clear separation
between the two subgroups of the population.
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Table 5 Top-5 and bottom-4 groups by discrimination score ds−(v) in
German credit. We report only the bottom-4, because there are only
four nodes in which ds+(v) > ds−(v)

ds−(v) as−(v) as+(v)

residence_since_le_1d6 1 6.0 –

residence_since_gt_2d8 1 2.23 –

residence_since_from_1d6_le_2d2 1 6.0 –

age_gt_52d6 0.86 3.68 4.0

personal_status_male_single 0.791 5.15 5.0

job_unskilled_resident 0 – 2.39

personal_status_male_mar_or_wid 0.12 8.0 4.4

age_le_30d2 0.186 7.0 3.34

personal_status_female_ 0.294 6.48 4.4

div_or_sep_or_mar

In the Adult dataset (Fig. 5), we do not observe the same
neat separation in two subgroups as in the German credit
dataset, also due to the much larger number of points. Nev-
ertheless, as expected, ppr(δ+) and ppr(δ−) still exhibit
anti-correlation. In Fig. 5, we also use colors to show two
different groups: red dots are for age_Young and blue dots
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Fig. 3 Scatter plot of ppr(δ+) versus ppr(δ−) for each individual in
the German credit dataset

are for age_Old individuals. As expected,we can see that the
red dots are distributed more in the area of higher ppr(δ−).

Theplots inFig. 6 have a threshold t ∈ [0, 1]on theX-axis,
and the fraction of tuples having gds−() ≥ t on the Y -axis,
and they show this for different subgroups.Thefirst plot, from
theAdult dataset, shows the group female, young, and young
female. As we can see the individuals that are both young
and female have a higher generalized discrimination score.

Table 6 Top-5 and bottom-5
groups by discrimination score
ds−(v) in Census-income
dataset

ds−(v) as−(v) as+(v)

MIGSAME_Not_in_universe_under_1_year_old 0.71 4.09 8.82

WKSWORK_94_5_inf 0.625 3.0 6.76

AWKSTAT_Not_in_labor_force 0.59 2.0 6.16

VETYN_0_5_20_5 0.58 1.01 5.17

MARSUPWT_3188_455_4277_98 0.55 5.0 9.25

AHGA_Doctorate_degreePhD_EdD 0 – 3.07

AMARITL_Married_A_F_spouse_present 0 – 4.49

AMJOCC_Sales 0 – 2.0

ARACE_Asian_or_Pacific_Islander 0 – 6.47

VETYN_20_5_32_5 0 – 5.89

Table 7 Fraction of explainable
discrimination for some
exemplar pair of nodes in the
Adult dataset

Source node Intermediate fed−(v)

race_Amer_Indian_Eskimo education_HS_grad 0.481

sex_Female occupation_Other_service 0.310

age_Young occupation_Other_service 0.193

relationship_Unmarried education_HS_grad 0.107

race_Black education_11th 0.083

Source node Intermediate fed+(v)

relationship_Husband occupation_Exec_managerial 0.806

sex_Male occupation_Exec_managerial 0.587

native_country_Iran education_Bachelors 0.480

native_country_India education_Prof_school 0.415

age_Old occupation_Exec_managerial 0.39
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Fig. 4 Individual discrimination: histogram representing the distribu-
tion of the values of the generalized discrimination score gds− for the
population of the German credit dataset
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Fig. 5 Individual discrimination: scatter plot of ppr(δ+) versus
ppr(δ−) for each individual in the Adult dataset. Red dots are for
age_Young and blue dots are for age_Old
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Fig. 6 Subgroup discrimination: plots reporting a threshold t ∈ [0, 1]
on the X-axis and the fraction of tuples having gds−() ≥ t on the Y -
axis. The top plot is from Adult, while the bottom is from German
credit

Similarly, the second plot shows the groups old, single male,
and old single male from the German credit dataset. Here
we can observe much lower rates of discrimination with only
1/5 of the corresponding populations having gds−() ≥ 0.5,
while in the previous plot it was more than 85%.

Table 8 Top-5 and bottom-5 groups by discrimination score ds−(v) in
Adult dataset, where SBCN is learned by Algorithm 2

ds−(v) as−(v) as+(v)

relationship_Unmarried 0.993 1.69 7.2

marital_status_Never_married 0.972 2.12 5.90

race_Black 0.968 2.89 6.57

sex_Female 0.941 3.01 4.83

age_Young 0.937 2.01 6.12

sex_Male 0.034 3.56 1.14

native_country_India 0.07 5.2 3.98

relationship_Husband 0.089 5.0 2.05

marital_status_Married_civ_spouse 0.11 2.885 2.06

age_Old 0.16 2.83 1.73

6.5 Learning SBCN without manual temporal ordering

Table 8 reports the top-5 and bottom-5 nodes w.r.t. the
discrimination score ds−, for dataset Adult, using the Algo-
rithm 2 presented in Sect. 4.5. We can observe that although
the values of ds−(v), as−(v) and as+(v) are slightly differ-
ent from the ones in Table 4, the top-5 nodes and bottom-5
nodes w.r.t. the discrimination score ds− are the same.

Table 9 reports some examples of fraction of explain-
able discrimination (both positive and negative) on the Adult
dataset, where here SBCN generated by the Algorithm 2,
presented in Sect. 4.5. We can observe that although the val-
ues of fed−(v) are slightly different from the ones in Table 7,
the same kind of relationship is observed between every pair
of nodes. The above results highlight the fact that we can
learn SBCN without accessing manual temporal ordering
while the values of discrimination measures are very similar
to the case where temporal ordering is given in advance.

Finally,we also computed the value of individual discrimi-
nation score forAdult dataset, whereSBCN has been learned
by Algorithm 2. Figure 7 presents a scatter plot of ppr(δ+)

versus ppr(δ−) for each individual in theAdultcredit dataset.
Similar to Fig. 5, here we also observe the anti-correlation
between ppr(δ+) and ppr(δ−). Comparing the two figures
shows that the distribution of the discrimination score using
the both approaches is very similar.

6.6 Comparison with prior methods

In this section, we discuss examples in which our causation-
based method draws different conclusions from the correla-
tion-based methods presented in [30,31] and [39] using the
same datasets and the same protected groups 6.

The first example involves the foreign_worker group
from German Credit dataset, whose contingency table is

6 We could not compare with [26] due to repeatability issues.
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Table 9 Fraction of explainable
discrimination for some
exemplar pair of nodes in the
Adult dataset. , where SBCN is
learned by Algorithm 2

Source node Intermediate fed−(v)

race_Amer_Indian_Eskimo education_HS_grad 0.368

sex_Female occupation_Other_service 0.230

age_Young occupation_Other_service 0.123

relationship_Unmarried education_HS_grad 0.107

race_Black education_11th 0.05

Source node Intermediate fed+(v)

relationship_Husband occupation_Exec_managerial 0.783

sex_Male occupation_Exec_managerial 0.773

native_country_Iran education_Bachelors 0.409

native_country_India education_Prof_school 0.37

age_Old occupation_Exec_managerial 0.336
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Fig. 7 Individual discrimination: scatter plot of ppr(δ+) versus
ppr(δ−) for each individual in theAdult dataset, whereSBCN is learned
by Algorithm 2

decision
- +

foreign worker=yes 298 667 968
foreign worker=no 2 30 32

300 700 1000

p1 = 298/968= 0.307
p2 = 2/32= 0.0625

RD= p1− p2 = 0.244

Fig. 8 Contingency table for foreign_worker in the German credit
dataset

decision
- +

race=black 4119 566 4685
race=black 33036 11121 44157

37155 11687 48842

p1 = 4119/4685= 0.879
p2 = 33036/44157= 0.748

RD= p1− p2 = 0.13

Fig. 9 Contingency table for race_black in the Adult dataset

reported in Fig. 8. Following the approaches of [30,31], and
[39], the foreign_worker group results strongly discrimi-
nated. In fact, Fig. 8 shows an RD value (risk difference) of
0.244 which is considered a strong signal: in fact RD > 0 is
already considered discrimination [39].

However, we can observe that the foreign_worker group
is not very significant, as it contains 963 tuples out of 1000
total. In fact, our causal approach does not detect any dis-
crimination with respect to foreign_worker which appears
as a disconnected node in the SBCN.

Male

Dep_A

0.252

Dep_B

0.183

Admission_Yes

0.33 0.254

Female

Dep_C

0.201

Dep_D

0.047

Dep_E

0.142

Dep_F

0.045

Admission_No

0.039 0.052 0.15 0.378

Fig. 10 The SBCN constructed from Berkeley Admission Data
dataset

The second example is in the opposite direction. Consider
the race_black group fromAdult datasetwhose contingency
table is shown in Fig. 9. Our causality-based approach detects
a very strong signal of discrimination (ds−() = 0.994),while
the approaches of [30,31], and [39] fail to discover discrim-
ination against black minority when the value of minimum
support threshold used for extracting classification rules is
more than 10%. On the other hand, when such minimum
support threshold is kept lower, the number of extracted rules
might be overwhelming.

Finally, we turn our attention to the famous example of
false-positive discrimination case happened at Berkeley in
1973 that we discussed in Sect. 1. Figure 10 presents the
SBCN extracted by our approach from Berkeley Admis-
sion Data. Interestingly, we observe that there is no direct
edge between node sex_Female and Admission_No. And
sex_Female is connected to node Admission_No through
nodes of Dep_C, Dep_D, Dep_E, and Dep_F, which are
exactly the departments that have lower admission rate. By
running our random-walk-based methods over SBCN we
obtain the value of 1 for the score of explainable discrimina-
tion confirming that apparent discrimination in this dataset is
due the fact that women tended to apply to departments with
lower rates of admission.

123



Int J Data Sci Anal (2017) 3:1–21 17

decision
- +

gender=female 1278 557 1835
gender=male 1493 1158 2651

2771 1715 4486

p1 = 1278/1835= 0.696
p2 = 1493/2651= 0.563
RD= p1− p2 = 0.133

Fig. 11 Contingency table for female in the Berkeley Admission
Data dataset

Similarly, we observe that there is no direct edge between
node sex_Male and Admission_Yes. And sex_Male is
connected to node Admission_Yes through nodes of
Dep_A, and Dep_B, which are exactly the departments that
have higher admission rate. By running our random-walk-
based methods over SBCN we obtain the value of 1 for the
score of explainable discrimination confirming that apparent
favoritism toward men is due to the fact that men tended to
apply to departments with higher rates of admission.

However, following the approaches of [30,31], and [39],
the contingency table shown in Fig. 11 can be extracted from
Berkeley Admission Data. As shown in Fig. 11, the value
of RD suggests a signal of discrimination versus women.

This highlights oncemore the pitfalls of correlation-based
approaches to discrimination detection and the need for a
principled causal approach, as the one we propose in this
paper.

7 Conclusions and future work

Discrimination discovery from databases is a fundamental
task in understanding past and current trends of discrimi-
nation, in judicial dispute resolution in legal trials, in the
validation of micro-data before they are publicly released.
While discrimination is a causal phenomenon, and any dis-
crimination claim requires proving a causal relationship, the
bulk of the literature on data mining methods for discrimina-
tion detection is based on correlation reasoning.

In this paper, we propose a new discrimination discov-
ery approach that is able to deal with different types of
discrimination in a single unifying framework. We define a
method to extract a graph representing the causal structures
found in the database, and then we propose several random-
walk-based methods over the causal structures, addressing a
range of different discrimination problems. Our experimen-
tal assessment confirmed the great flexibility of our proposal
in tackling different aspects of the discrimination detection
task, and doing so with very clean signals, clearly separating
discrimination cases.

To the best of our knowledge, this is the first proposal
of discrimination detection in databases grounded in proba-
bilistic causal theory: as such there are several research paths
that are worth further investigation.

In various fields such as epidemiology, social sciences,
psychology, and statistics, it is a common practice to per-
form the so-called observational studies to draw inferences
of causal effects such as for instance the possible effect (e.g.,

survival) of a treatment (e.g., a drug) on subjects. In this case,
we rephrase the task of causal inference in terms of counter-
factual evidence, aims at assessing potential causal behaviors
between a factor (e.g., being female) and an outcome (e.g.,
income) given a set of confounding factors (the other covari-
ates in the model) which provides the context for the causal
relation. However, it is not easy to conduct such intervention
studies in the social settings in which discrimination occurs
naturally. Thus introducing counterfactual causality into our
framework is not straightforward and we leave further inves-
tigations regarding this for future work.

In our framework, we assume that the nodes of interest
are known. This is a reasonable assumption for the group
discrimination as the protected (sensitive) groups are usually
predefined by legislation. However, this might not be the
case for the subgroup discrimination. Automatically explor-
ing the whole space of possible discrimination patterns is a
research challenge that we aim to tackle in the future work.
One possible solution is to start from individual discrimi-
nation scores: the attribute values of the individual records
with high discrimination score are potential candidates for
measuring subgroup discrimination.
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8 Appendix: supplementary materials

Theories of causality are old and central to many fields: phi-
losophy, logic, biology, inductive and statistical inference,
and, most recently, invading computer and data sciences—
distinct versions of theories enjoying varying degrees of
popularitywithin various fields. The differences among these
theories are subtle and are often not readily appreciated by
the practitioners, leading to acrimonious disputes . In order
to situate our work properly within these naturally confus-
ing contexts, we provide here a brief review of some of the
influential theories of causality. In particular, we start with
the foundational work of Hume (e.g., regularity) and Lewis
(e.g., counterfactual), which represents the origin of themore
recent developments in machine learning, most prominently
by Judea Pearl—currently enjoying a viral popularity among
the engineers and computer scientists reenergizing the study
of causal inference and related algorithms. Of related inter-
est to computer scientists is the question of complexity of
inference: for instance, Pearl’s approach usually leads to
computational intractability. However, the theories of prob-
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abilistic causation due to Patrick Suppes, despite various
known limitations and pitfalls, are expressible in probabilis-
tic computational tree logic with efficient model checkers
that allow devising efficient learning algorithms, as discussed
and proved in this paper to be effective. Furthermore, since
there are various paradoxes (e.g., Goodman and Simpsons)
plaguing the theories, the quest for a single universal the-
ory of causality will likely remain elusive. Nonetheless, with
the advent of data science generating massive amount of
measurements from natural experiments, there is now a pos-
sibility of a consensus theory that allows reasonably efficient
algorithms and demonstrates empirically its power to min-
imize false and missing discoveries. Based on a detailed
empirical analysis of Kleinberg [33] and her coauthors, we
suspect that such a theorywill build upon thework of Suppes,
focusing on prima facie causality, modulo various regulariza-
tion techniques to reduce spurious causalities. Beyond what
we describe below, a more detailed presentation of the exten-
sive (and steadily growing) literature of causality theories is
beyond the scope of this work. We refer the interested reader
to and citations within.

8.1 Hume’s regularity theory

The modern study of causation begins with the Scottish
philosopher David Hume (1711–1776). According to Hume,
a theory of causation could be defined axiomatically, using
the following ingredients: temporal priority, implying that
causes are invariably followed by their effects [14], aug-
mented by various constraints, such as contiguity and con-
stant conjunction7. Theories of this kind, that try to analyze
causation in terms of invariable patterns of succession, have
been referred to as regularity theories of causation.

Nonetheless, as described earlier, the notion of causation
has spawned far too many variants and has been a source
of acerbic debates. All these theories present well-known
limitations and confusion, but have led to a small number
of modern versions of commonly accepted (at least among
the philosophers) frameworks. Thus, in the next sections we
will provide a review of the main state-of-the-art theories
of causation that have attempted to formulate a sound and
complete theory of causation.

8.2 Lewis’s counterfactuals

The most complete known counterfactual theory of cau-
sation is due to David Lewis [23] and exploits a possible
world semantics to state truth conditions for counterfactuals
in terms of similarity among possible worlds: one possible

7 Some of these notions have been modernized with the introduction
of the machinery from statistical inference, logic and model theory; but
they have stayed more or less true to Hume’s program.

world is closer to actuality than another, if it is more similar
to the actual world.

Following this idea, Lewis defined two important con-
straints on the resulting similarity relation: (i) similarity
induces an ordering of worlds in terms of closeness to the
actual world and (ii) the actual world is the closest possible
world to actuality. Then, the evaluation of the counterfactual
“if c were the case, e would be the case” is true just in case it
is closer to actuality to make the first term true along with the
second—as opposed to making it true without. Therefore, in
terms of counterfactuals Lewis defines the following notion
of causality: given c and e, whether e occurs or not depends
onwhether c occurs or not, and e causally depends on c if and
only if, if c were not to occur e would not occur. Thus, the
idea of cause is conceptually linked to the idea of something
that makes a difference, and this concept in turn is naturally
described in terms of counterfactuals. Lewis also character-
ized causation in terms of temporal direction by stating that
the direction of causation is the direction of causal depen-
dence and that, typically, events causally depend on earlier
events but not on later ones.

8.3 Manipulability theories of causation

We now briefly discuss the notion of intervention as pro-
pounded by Judea Pearl [28]; in general, interventionist
versions of manipulability theories can be seen as coun-
terfactual theories. For a detailed discussion on this and
manipulability theories of causation, refer to [44].

Pearl characterizes his notion of intervention in terms of
a primitive notion of causal mechanism. According to him,
the world is organized in the form of stable mechanisms (i.e.,
physical laws) which are autonomous. Therefore, he states
that we can change one of them, without changing all the oth-
ers. Thus an intervention may imply that: if we manipulate
c and nothing happens, then c cannot be cause of e, but if a
manipulation of c leads to a change in e, then we know that c
is a cause of e, although there might be other causes as well.

In other words, when among many events a causal rela-
tionship between some e and its parents (i.e., directed causes,
say c1, . . ., cn) is present, the interventions will disrupt com-
pletely the relationships between e and c1, . . ., cn such that
the value of e is determined by the intervention only. Thus,
intervention is a surgical operation in the sense that no other
causal relationship in the system is changed by it. Hence,
Pearl’s assumption is that the other variables that change in
values under this intervention will do so only because they
are effects of e. Pearl’s theory has been very influential
among the computational causality theorists and has gener-
ated state-of-the-art algorithms for causal network inference
[19].
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8.4 Issues of interventionist causation

Next, we point the reader to some problems that can arise in
practice, when applying intervention in the context of causal
inference. For a deeper discussion, we refer to [44].

Circularity. An intervention on an event e leaves intact all
the other causal mechanisms besides the ones involving c as
a cause. Because of this, Pearl’s intervention could lead to
circularity problems, i.e., it seems that the causalmechanisms
need to be known in advance in order to validate (or refute)
them.

Possible and impossible interventions. Causal claims are
described in terms of counterfactuals of what would happen
when applying intervention to a given causal relationship.
Moreover, the notion of intervention is connected with the
possibility of a human action to intervene in a system. In
some contexts, however, it may be impossible to evaluate
what would happen by performing a surgical intervention.
Thus, it should be clear that, regardless of the possible crit-
icisms to Pearl’s framework, there are situations where, at
least relative to the current human capabilities, it is very com-
plicated, if not impossible, to perform intervention.

8.5 Suppes’ prima facie cause

Patrick Suppes proposed the notion of a prima facie cause
that represents the core of probabilistic causation and also
provides the algorithmic foundations of our analysis.

Definition 5 (Probabilistic causation, [41]) For any two
events c and e, occurring, respectively, at times tc and te,
under the mild assumptions that 0 < P(c), P(e) < 1, the
event c is called a prima facie cause of e if it occurs before
and raises the probability of e, i.e.,

tc < te and P(e | c) > P(e | c) . (1)

From now on, the first condition will be referred to as tem-
poral priority, whereas the second as probability raising.
This notion of causation has some advantages over the sim-
plest version of a regularity theory of causation, e.g., it
deals with various issues usually associated with imperfect
regularities.

Unfortunately, however, prima facie causality is still not
sufficient in capturing a causation relationship in its full gen-
erality. For instance, the problem of spurious regularities still
remains, additionally requiring that prima facie causes be
refined further into two classes: genuine and spurious. In
the latter case, as discussed, we may observe a prima facie
cause to be so labeled only because of spurious correlations.
Also, as discussed extensively in the literature (see [13]), one

may encounter certain situations, in which Suppes’ charac-
terization fails to provide a necessary condition. In the next
paragraph, we will briefly discuss an attempt to make Sup-
pes’ conditions sufficient for any causal claims.

8.6 Reichenbach’s screening-off

In [35], Reichenbach discussed the notion of screening-off
to describe a particular type of probabilistic relationship.
Consider, e.g., events a, c and e, and assume to observe
P(e | a ∧ c) = P(e | c), then we say that c is screening a
off from e. When P(e ∧ c) > 0, this is equivalent to stating
that P(a ∧ e | c) = P(a | c) · P(e | c) – i.e., a and e happen
to be probabilistically independent, when conditioned upon
c. The preceding situation could occur in two cases.

In the first case, c is a genuine cause of e while a is a
genuine cause of c as well, and the correlations between a
and e are only just manifestations of these known causal con-
nections. For example, unprotected sex (a) appears to cause
AIDS (e) only because of sexually transmitted HIV infec-
tion (c). Then, we would expect that among those who have
already been infected with HIV, the probability of contact-
ing AIDS would be the same regardless of whether one is
engaged in unprotected sex or not. Here c is a proximate
cause of e and an intermediate cause leading from a to e,
i.e., an instance of causal transitivity. In the second case, c
is a common cause of both a and e, that is exactly a situation
of spurious correlation.

Building upon this idea, Reichenbach formulated the so-
called common cause principle (CCP) to detect situations
leading to “screening-off,” and so identify when a spuri-
ous correlation can be explained in terms of a common
cause.Unfortunately, there are situationswhere such a princi-
ple leads to computationally intractable criteria. Since these
issues are not germane to the context of this work, wewill not
discuss them further, other than pointing the interested read-
ers to appropriate literature [13]. Nevertheless, the idea of
screening-off has significantly influenced some of the most
widely used recent theories of causation and has become cen-
tral to the topic.

8.7 Issues of probabilistic causation

Now, we describe some thorny issues in the theory of proba-
bilistic causation. We also briefly point out some unresolved
problems, proposed plans of attack, and ensuing criticisms.
For a deeper discussion, see [13].

Pearl’s criticism. In [28], Pearl argues that the notion that
causes “raise the probabilities” of their effects cannot be
expressed in the language of probability theory. In partic-
ular, according to Pearl, the inequality P(e | c) > P(e | c̄)
fails to capture the intuition behind probability raising, which
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must be manipulative or counterfactual. Because of this
limit, Pearl argues that it is not possible to rigorously describe
the intuitions behind the probability raising theory and, for
this reason, the only way to properly assess a causal claim is
exclusively by intervention.

Note that, as discussed before, it would be impossible to
execute randomized experiments involving discrimination,
thusmakingPearl’s criticism largely irrelevant in our context.
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