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ABSTRACT
Multilayer networks are a powerful paradigm to model complex

systems, where various relations might occur among the same set

of entities. Despite the keen interest in a variety of problems, algo-

rithms, and analysis methods in this type of network, the problem

of extracting dense subgraphs has remained largely unexplored.

As a first step in this direction, in this work we study the problem

of core decomposition of a multilayer network. Unlike the single-layer

counterpart in which cores are all nested into one another and can

be computed in linear time, the multilayer context is much more

challenging as no total order exists among multilayer cores; rather,

they form a lattice whose size is exponential in the number of layers.

In this setting we devise three algorithms which differ in the way

they visit the core lattice and in their pruning techniques. We assess

time and space efficiency of the three algorithms on a large variety

of real-world multilayer networks.

We then move a step forward and showcase an application of

the multilayer core-decomposition tool to the problem of densest-

subgraph extraction from multilayer networks. We introduce a defi-

nition of multilayer densest subgraph that trades-off between high

density and number of layers in which the high density holds,

and show how multilayer core decomposition can be exploited to

approximate this problem with quality guarantees.

1 INTRODUCTION
In social media and social networks, as well as in several other

real-world contexts – such as biological and financial networks,

transportation systems and critical infrastructures – there might be

multiple types of relation among entities. Data in these domains is

typically modeled as a multilayer network (also known as multidi-

mensional network), i.e., a graph where multiple edges of different

types may exist between any pair of vertices [17].

Extracting dense structures from large graphs has emerged as a

key graph-mining primitive in a variety of scenarios [28]. Although

the literature on multilayer graphs is growing fast, the problem

of extracting dense subgraphs in this type of graph has been, sur-

prisingly, largely unexplored. In standard graphs, among the many

definitions of dense structures, core decomposition plays a central
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role as it can be computed in linear time [7], and can be used to

speed-up/approximate dense-subgraph extraction according to var-

ious other definitions. For instance, core decomposition provides a

heuristic for maximal-clique finding [18], as ak-clique is guaranteed
to be contained into a (k−1)-core, which can be significantly smaller

than the original graph. Also, core decomposition is at the basis

of approximation algorithms for the densest-(at-least-k-)subgraph
problem [2, 27] and betweenness centrality [23].

In this work we study the problem of core decomposition in mul-

tilayer networks, and show how it finds application to the problem

of densest-subgraph extraction from multilayer networks.

1.1 Background and related work
Core decomposition. Let us first recall the classic notion of core

decomposition in a simple, single-layer, graphG = (V ,E). For every
vertex u ∈ V , let deд(u) and deдS (u) denote the degree of u in G
and in a subgraph S of G, respectively. Also, given a set of vertices

C ⊆ V , let E[C] denote the subset of edges induced by C .

Definition 1 (core decomposition). Thek-core (or core of order
k) of G is a maximal subgraph G[Ck ] = (Ck ,E[Ck ]) such that ∀u ∈
Ck : deдCk (v ) ≥ k . The set of all k-cores G = C0 ⊇ C1 ⊇ · · · ⊇ Ck∗
(k∗ = arg maxk Ck , ∅) is the core decomposition of G.

Core decomposition can be computed in linear time by iteratively

removing the smallest-degree vertex and setting its core number as

its degree at the time of removal [7]. Core decomposition has been

employed for analyzing/visualizing complex networks [1] in several

domains, e.g., bioinformatics [40], and social networks [26]. It has

been studied under various settings, such as distributed [29, 32],

streaming [33], and disk-based [16], and for various types of graph,

such as uncertain [13], directed [21], and weighted [20] graphs.

In this paper we adopt the definition of a multi-layer core by

Azimi-Tafreshi et al. [4], which study the core-percolation problem

from a physics standpoint, without providing any algorithm. They

characterize cores on 2-layer Erdős-Rényi and 2-layer scale-free

networks, then they analyze real-world (2-layer) air-transportation

networks. To the best of our knowledge, no prior work has stud-

ied how to efficiently compute the complete core decomposition of

multilayer networks.

Densest subgraph. Several notions of density exist in the literature,
each of which leading to a different version of the problem of

extracting a single dense subgraph. While most variants are NP-
hard, or even inapproximable, extracting dense subgraphs according

to the average-degree density (i.e., two times the number of edges

divided by the number of vertices) is solvable in polynomial time

[22]. As a result, such a density has attracted most of the research

in the field, so that the subgraph maximizing the average-degree

density is commonly referred to as the densest subgraph.

https://doi.org/10.1145/3132847.3132993


Goldberg [22] provides an exact solution based on iteratively

solving ad-hoc-defined minimum-cut problem instances. Although

principled and elegant, Goldberg’s algorithm cannot scale to large

graphs. Asahiro et al. [3] and Charikar [15] provide a more efficient

(linear-time)
1

2
-approximation algorithm. The algorithm greedily

removes the smallest-degree vertex, until the graph has become

empty. Among all subgraphs produced during this vertex-removal

process, the densest one is returned as output. Note that this al-

gorithm resembles the one used for core decomposition. In fact,

it can be proved that the inner-most core of a graph is itself a

1

2
-approximation of the densest subgraph.

The densest-subgraph problem has been studied in a streaming

setting [5, 9], and a top-k fashion [6, 19]. Also, a number of works

depart from the classic average-degree density and focus on, e.g.,

quasi-clique-based density [36], or triangle density [37, 38].

Dense structures in multilayer networks. Surprisingly, little
attention has been paid to the problem of extracting dense sub-

graphs from multilayer networks. To the best of our knowledge,

the only attempt to generalize the densest-subgraph problem to

the multilayer context has been carried out by Jethava et al. [24],

who formulate the densest common subgraph problem, i.e., find a

subgraph maximizing the minimum average degree over all lay-

ers. Jethava et al. devise a linear-programming formulation of the

problem, as well as a heuristic greedy algorithm. However, no

approximation algorithms with provable quality guarantees are

provided. Some other works deal with the specific case of 2-layer

networks [34, 39, 43]. Other marginally-related works focus on

community detection [8, 14, 30, 31, 35, 42], subspace clustering [11],

i.e., finding clusters of vertices that are densely connected by edges

with similar labels for all possible label sets, mining closed rela-

tional graphs [41], i.e., finding all frequent subgraphs of a multi-

layer graph having large minimum cut, and extracting frequent

cross-graph quasi-cliques [25], i.e., finding all subgraphs satisfying

the quasi-clique condition in at least a fraction of layers equal to

min_sup, and having size larger than min_size.

In this work we introduce a formulation of the densest-subgraph

problem in multilayer networks that generalizes the densest com-

mon subgraph problem studied in [24] by trading off between high

density and number of layers where the high density is observed.

We apply our multilayer core-decomposition tool to solve both our

general formulation of multilayer densest subgraph and the spe-

cific densest-common-subgraph variant by Jethava et al. [24] with

provable approximation guarantees. Furthermore, we show that

multilayer core decomposition can profitably be exploited to speed-

up the problem of finding frequent cross-graph quasi-cliques [25].

1.2 Challenges and contributions
LetG = (V ,E,L) be a multilayer graph, whereV is a set of vertices,

L is a set of layers, and E ⊆ V ×V × L is a set of edges. Given an

|L|-dimensional integer vector k = [kℓ]ℓ∈L , the multilayer k-core
of G is a maximal subgraph whose vertices have at least degree kℓ
in that subgraph, for all layers ℓ. Vector k is dubbed coreness vector

of the core. The set of all non-empty and distinct multilayer cores

constitutes the multilayer core decomposition of G. A major chal-

lenge of computing the complete core decomposition of multilayer

networks is that the number of multilayer cores can be exponential

in the number of layers, which makes the problem inherently hard

as no polynomial-time algorithm may exist in the general case. In

fact, unlike the single-layer case where cores are all nested into

each other, no total order exists among multilayer cores. Rather,

they form a core lattice defining a relation of partial containment.

As a result, the multilayer core-decomposition problem cannot be

solved in linear time like in single-layer graphs: algorithms in the

multilayer setting must be crafted carefully to handle this expo-

nential blowup, and avoid, to the maximum possible extent, the

computation of unnecessary (i.e., empty or non-distinct) cores.

We devise three algorithms that exploit effective pruning rules

during the visit of the lattice. The first two methods are based on a

bfs and a dfs strategy, respectively: the bfs method exploits the

rule that a core is contained into the intersection of all its fathers

in the lattice, while the dfs method iteratively performs a single-

layer core decomposition that computes cores along a path from a

non-leaf lattice core to a leaf all at once. The third method adopts

a hybrid strategy embracing the main pros of bfs and dfs, and

equipped with a look-ahead mechanism to skip non-distinct cores.

As a major application of multilayer core decomposition, we turn

our attention to the problem of extracting the densest subgraph from

amultilayer network. To the best of our knowledge, the only existing

attempt to formulate this problem is the one by Jethava et al. [24],

who aim at extracting a subgraph that maximizes the minimum av-

erage degree over all layers. A major limitation of this formulation

is that, considering all layers, even the noisy/insignificant layers

would contribute to selecting the output subgraph, which would be

not really dense, thus preventing us from finding a subgraph being

dense in a still large subset of layers. Another simplistic approach

at the other end of the spectrum corresponds to flattening the input

multilayer graph and resorting to single-layer densest-subgraph

extraction. However, this would mean disregarding the different

semantics of the layers, incurring in a severe information loss.

Within this view, in this work we introduce a problem statement

that generalizes the formulation by Jethava et al. by accounting for a

trade-off between high density and number of layers exhibiting the

high density. Given a multilayer graphG = (V ,E,L), the average-
degree density of a subset of vertices S in a layer ℓ is defined as

the number of edges induced by S in ℓ divided by the size of S , i.e.,
|Eℓ [S] |

|S | . We define the multilayer densest subgraph as the subset of

vertices S∗ such that the function

max

L̂⊆L
min

ℓ∈L̂

|Eℓ[S∗]|

|S∗ |
|L̂|β

is maximized. β ∈ R+ is a parameter controlling the importance

of the two sides of the same coin of our problem, i.e., high density

and number of layers exhibiting such a density. It can be observed

that this problem statement naturally achieves the desired trade-off:

the larger the subset L̂ of selected layers, the smaller the minimum

density minℓ∈L̂
|Eℓ [S] |

|S | registered in those layers.

Similarly to the single-layer case in which the core decomposi-

tion can be used to obtain a
1

2
-approximation of the densest sub-

graph, in this work we show that computing the multilayer core

decomposition of the input graph and selecting the core maxi-

mizing the proposed multilayer density function achieves a
1

2 |L |β
-

approximation for the general multilayer-densest-subgraph prob-

lem formulation, and a
1

2
-approximation for the Jethava et al.’s

formulation. The latter one is a per-se noteworthy advancement to



the state of the art, as, to the best of our knowledge, no approxima-

tion algorithms with provable quality guarantees have been so far

devised for the Jethava et al.’s problem.

Summarizing, this work has the following contributions:

• We define the problem of core decomposition in multilayer

networks, characterizing its usefulness, its relation to other

problems, and its intrinsic complexity. We then devise three

algorithms that solve multilayer core decomposition efficiently

based on different pruning techniques.

• We study the problem of densest-subgraph extraction in mul-

tilayer networks, formulating it as an optimization problem

that trades-off between high density and number of layers

exhibiting high density.

• We exploit multilayer core decomposition to efficiently approx-

imate both our definition of multilayer densest subgraph and

the one by Jethava et al. [24] with provable quality guarantees.

2 MULTILAYER CORE DECOMPOSITION
We are given an undirected multilayer graphG = (V ,E,L), where
V is a set of vertices, L is a set of layers, and E ⊆ V ×V ×L is a set of

edges. Let Eℓ denote the subset of edges in layer ℓ ∈ L. For a vertex
u ∈ V we denote by deд(u, ℓ) and deд(u) its degree in layer ℓ and

over all layers, respectively, i.e.,deд(u, ℓ) = |{e = (u,v, ℓ) : e ∈ Eℓ }|,
deд(u) = |{e = (u,v, ℓ) : e ∈ E}| =

∑
ℓ∈L deд(u, ℓ).

For a subset of vertices S ⊆ V we denote byG[S] the subgraph of

G induced by S , i.e.,G[S] = (S,E[S],L), whereE[S] = {e = (u,v, ℓ) |
e ∈ E,u ∈ S,v ∈ S }. For a vertex u ∈ V we denote by deдS (u, ℓ)
and deдS (u) its degree in subgraph S considering layer ℓ only and

all layers, respectively, i.e., deдS (u, ℓ) = |{e = (u,v, ℓ) : e ∈ Eℓ[S]}|,

deдS (u) = |{e = (u,v, ℓ) : e ∈ E[S]}| =
∑

ℓ∈L deдS (u, ℓ). Finally,

let µ (ℓ) and µ (L̂) denote the minimum degree of a vertex in layer

ℓ and in a subset L̂ ⊆ L of layers, respectively. Let also µ (S, ℓ) and
µ (S, L̂) denote the corresponding counterparts of µ (ℓ) and µ (L̂) for
a subgraph (induced by a vertex set) S .
A core of amultilayer graph is characterized by an |L|-dimensional

integer vector k = [kℓ]ℓ∈L , dubbed coreness vector, whose compo-

nents kℓ denote the minimum degree allowed in layer ℓ: 1

Definition 2 (multilayer core and coreness vector). Given

a multilayer graph G = (V ,E,L) and an |L|-dimensional integer

vector k = [kℓ]ℓ∈L , the multilayer k-core ofG is amaximal subgraph

G[C] = (C ⊆ V ,E[C],L) such that ∀ℓ ∈ L : µ (C, ℓ) ≥ kℓ . Vector k is

referred to as coreness vector of G[C].

Given a coreness vector k, we denote by Ck the corresponding
core. Also, as a k-core is fully identified by the vertices belonging

to it, we hereinafter refer to it by its vertex set Ck and the induced

subgraph G[Ck] interchangeably.

A set of vertices C ⊆ V may correspond to multiple cores. For

instance, in the graph in Figure 1 the set {A,B,D,E} corresponds to
both (3, 0)-core and (3, 1)-core. In other words, a multilayer core

can be described by more than one coreness vector. However, as

formally shown next, among such multiple coreness vectors there

1
Definition 2 corresponds to the notion of k-core used by Azimi-Tafreshi et al. [4] for

the multilayer core-percolation problem. As discussed in Section 1.1, Azimi-Tafreshi et

al. do not study (or devise any algorithm for) the problem of computing the entire core

decomposition of a multilayer graph. Core percolation is studied by analyzing a single

core of interest computed with the simple iterative-peeling algorithm (Algorithm 1).

exists one and only one that is not dominated by any other. We

call this vector the maximal coreness vector of C . In the example in

Figure 1 the maximal coreness vector of {A,B,D,E} is (3, 1).

Definition 3 (maximal coreness vector). Let G = (V ,E,L)
be a multilayer graph, C ⊆ V be a core of G, and k = [kℓ]ℓ∈L be

a coreness vector of C . k is said maximal if there does not exist any

coreness vector k′ = [k ′
ℓ
]ℓ∈L of C such that ∀ℓ ∈ L : k ′

ℓ
≥ kℓ and

∃ ˆℓ ∈ L : k ′
ˆℓ
> k

ˆℓ
.

Theorem 1. Multilayer cores have a unique maximal coreness

vector.

Proof.We prove the theorem by contradiction. Assume two max-

imal coreness vectors k = [kℓ]ℓ∈L , k′ = [k ′
ℓ
]ℓ∈L exist for a

multilayer coreC . As k , k′ and they are both maximal, there exist

two layers
ˆℓ and ¯ℓ such that k

ˆℓ
> k ′

ˆℓ
and k ′

¯ℓ
> k ¯ℓ . By definition

of multilayer core (Definition 2), it holds that ∀ℓ ∈ L : µ (C, ℓ) ≥
kℓ , µ (C, ℓ) ≥ k ′

ℓ
. This means that the vector k∗ = [k∗

ℓ
]ℓ∈L , with

k∗
ℓ
= max{kℓ ,k

′
ℓ
},∀ℓ ∈ L, is a further coreness vector of C . For this

vector it holds that ∀ℓ , ˆℓ, ℓ , ¯ℓ : k∗
ℓ
≥ k ′

ℓ
, k∗

ˆℓ
> k ′

ˆℓ
, and k∗

¯ℓ
> k ¯ℓ .

Thus, k∗ dominates both k and k′, which contradicts the hypothesis
of maximality of k and k′. The theorem follows. □

The (first) problem we tackle in this work is the following:

Problem 1 (Multilayer Core Decomposition). Given a mul-

tilayer graphG , find the set of all non-empty and distinct cores ofG ,
along with their corresponding maximal coreness vectors. Such a set

forms the multilayer core decomposition of G.

Characterization. Cores of a single-layer graph are all nested one

into another. This makes it possible to define the notions of inner-

most core, i.e., the core of highest order, and core index (or core

number) of a vertex u, i.e, the highest order of a core containing u.
In the multilayer setting the picture is more complex, as multilayer

cores are not necessarily all nested into each other. As a result, the

core index of a vertex is not unambiguously defined, while there

can exist multiple inner-most cores:

Definition 4 (inner-most multilayer cores). The inner-most

cores of a multilayer graph are all those cores with maximal coreness

vector k = [kℓ]ℓ∈L such that there does not exist any other core

with coreness vector k′ = [k ′
ℓ
]ℓ∈L where ∀ℓ ∈ L : k ′

ℓ
≥ kℓ and

∃ ˆℓ ∈ L : k ′
ˆℓ
> k

ˆℓ
.

To this purpose, look at the example in Figure 1. It can be ob-

served that: (i) cores are not nested into each other, (ii) (3, 1)-core,
(1, 3)-core and (2, 2)-core are the inner-most cores, and (iii) vertices
B and E belong to (inner-most) cores (3, 1), (1, 3), and (2, 2), thus
making their core index not unambiguously defined.

Another interesting insight into the notion of multilayer cores is

about their relationship with (quasi-)cliques. In single-layer graphs

it is well-known that cores can be exploited to speed-up the problem

of finding cliques, as a clique of size k is guaranteed to be contained

into the (k − 1)-core. Interestingly, a similar relationship holds in

the multilayer context too. Given a multilayer graphG = (V ,E,L),
a layer ℓ ∈ L, and a real number γ ∈ (0, 1], a subgraph G[S] =

(S ⊆ V ,E[S],L) ofG is said to be a γ -quasi-clique in layer ℓ if all its

vertices have at least γ ( |S | − 1) neighbors in layer ℓ within S , i.e.,



A B C

D E F

Figure 1: Example 2-layer graph (solid edges refer to the first layer,
while dashed edges to the second layer) with the following k-cores:
(0, 0) = (1, 0) = (0, 1) = (1, 1) = {A,B,C,D,E,F}, (2, 0) = (2, 1) =

{A,B,D,E,F}, (3, 0) = (3, 1) = {A,B,D,E}, (0, 2) = (1, 2) = (0, 3) =

(1, 3) = {B,C,E,F}, (2, 2) = {B,E,F} .

∀u ∈ S : deдS (u, ℓ) ≥ γ ( |S | − 1). Jiang et al. [25] study the problem

of extracting frequent cross-graph quasi-cliques: given a multilayer

graphG = (V ,E,L), a function Γ : L → (0, 1] assigning a real value

to every layer in L, a real number min_sup ∈ (0, 1], and an integer

min_size ≥ 1, find all maximal subgraphs G[S] of G of size larger

than min_size such that there exist at least min_sup × |L| layers ℓ
for which G[S] is a Γ(ℓ)-quasi-clique.

The following theorem shows that a frequent cross-graph quasi-

clique of size K is necessarily contained into a k-core described
by a maximal coreness vector k = [kℓ]ℓ∈L such that there exists

a fraction of at least min_sup layers ℓ where kℓ = ⌊Γ(ℓ) (K − 1)⌋.
Similarly to the single-layer setting, this finding can profitably be

exploited, among others, to speed-up the multilayer (quasi-)clique

extraction process.

Theorem 2. Given a multilayer graphG = (V ,E,L), a real-valued
function Γ : L → (0, 1], a real number min_sup ∈ (0, 1], and an

integermin_size ≥ 1, a frequent cross-graph quasi-clique of size K of

G complying with parameters Γ,min_sup, and min_size is contained

into a k-core with maximal coreness vector k = [kℓ]ℓ∈L such that

|{ℓ ∈ L : kℓ = ⌊Γ(ℓ) (K − 1)⌋}| ≥ min_sup × |L|.

Proof. Assume that a cross-graph quasi-clique S of size K is

not contained into any k-core with maximal coreness vector k =
[kℓ]ℓ∈L such that |{ℓ ∈ L : kℓ = ⌊Γ(ℓ) (K − 1)⌋}| ≥ min_sup ×

|L|. This means that S contains a vertex u such that |{ℓ ∈ L :

deдS (u, ℓ) ≥ Γ(ℓ) (K − 1)}| < min_sup × |L|. This violates the

definition of cross-graph quasi-clique. □

3 ALGORITHMS
A major challenge of the Multilayer Core Decomposition prob-

lem is that the number of multilayer cores to be output may be

exponential in the number of layers. Specifically, denoting byKℓ the

maximum order of a core for layer ℓ, the number of multilayer cores

is O (
∏

ℓ∈L Kℓ ). This makes Multilayer Core Decomposition in-

trinsically hard: in the general case, no polynomial-time algorithm

can exist. The challenge in this context hence lies in handling this

exponential blowup by early recognizing and skipping unnecessary

portions of the core lattice, such as non-distinct and/or empty cores.

Given a multilayer graph G = (V ,E,L) and a coreness vector

k = [kℓ]ℓ∈L , finding the corresponding core can easily be solved in

O ( |E | + |V | × |L|) time by iteratively removing a vertex u having

deдG′ (u, ℓ) < kℓ in some layer ℓ, where G ′ denotes the current

graph resulting from all previous vertex removals (Algorithm 1,

where the set S of vertices to be considered is set to S = V ). There-

fore, a naïve algorithm to compute the entire multilayer core de-

composition consists of generating all possible coreness vectors,

3,0,0 0,3,0 0,0,32,1,0 2,0,1 0,1,21,0,21,2,0 0,2,11,1,1

2,0,0 1,1,0 0,2,0 1,0,1 0,1,1 0,0,2

1,0,0 0,1,0 0,0,1

0,0,0

Figure 2: Core lattice of a 3-layer graph.

run the multilayer core-detection algorithm just described for each

of such vectors, and retain only non-empty and distinct cores. This

naïve method requires all vectors [kℓ]ℓ∈L , where each kℓ com-

ponent is varied within the interval [0..Kℓ].
2
This corresponds

to a Θ(
∏

ℓ∈L Kℓ ) number of vectors. As a result, the overall time

complexity of the method is O
(
( |E | + |V | × |L|) ×

∏
ℓ∈L Kℓ

)
.

This approach has two major weaknesses: (i) each core is

computed starting from the whole input graph, and (ii) by enu-

merating all possible coreness vectors beforehand a lot of non-

distinct and/or empty (thus, unnecessary) cores may be com-

puted. In the following we present three methods that solve

Multilayer Core Decomposition much more efficiently.

3.1 Search space
Although multilayer cores are not all nested into each other, a

notion of partial containment can still be defined. Indeed, it can

easily be observed that a k-core with coreness vector k = [kℓ]ℓ∈L
is contained into any k′-core described by a coreness vector k′ =
[k ′

ℓ
]ℓ∈L whose components k ′

ℓ
are all no more than components

kℓ , i.e., k
′
ℓ
≤ kℓ , ∀ℓ ∈ L. This result is formalized next:

Fact 1. Given a multilayer graph G = (V ,E,L) and two cores Ck
and Ck′ of G with coreness vectors k = [kℓ]ℓ∈L and k′ = [k ′

ℓ
]ℓ∈L ,

respectively, it holds that if ∀ℓ ∈ L : k ′
ℓ
≤ kℓ , then Ck ⊆ Ck′ .

Proof. Combining the definition of multilayer core (Definition 2)

and the hypothesis on vectors k and k′, it holds that ∀ℓ ∈ L :

µ (Ck, ℓ) ≥ kℓ ≥ k ′
ℓ
. This means that Ck satisfies the definition of

k′-core, thus implying that all vertices inCk are part ofCk′ too. The
fact follows. □

Based on Fact 1, the search space of our problem can be repre-

sented as a lattice defining a partial order among all cores (Figure 2).

Such a lattice, which we call the core lattice, corresponds to a dag

where nodes represent cores,
3
and links represent relationships of

containment between cores (a “father” node contains all its “child”

nodes). We assume the core lattice keeping track of non-empty

and not necessarily distinct cores: a core is present in the lattice

as many times as the number of its coreness vectors. Each level i
of the lattice represents the children of cores at lattice level i − 1.

In particular, level i contains all those cores whose coreness vec-
tor results from increasing one and only one component of its

fathers’ coreness vector by one. Formally, a lattice level i contains
all k-cores with coreness vector k = [kℓ]ℓ∈L such that there exists

a core at lattice level i − 1 with coreness vector k′ = [k ′
ℓ
]ℓ∈L where:

∃ℓ ∈ L : kℓ = k ′
ℓ
+ 1, and ∀ ˆℓ , ℓ : k

ˆℓ
= k ′

ˆℓ
. As a result, level 0

contains the root only, which corresponds to the whole input graph

(i.e., the [0] |L |-core), the leaves correspond to inner-most cores,

2Kℓ values can be derived beforehand by computing a single-layer core decomposition

in each layer ℓ. This process overall takes O ( |E |) time.

3
Throughout the paper we use the term “node” to refer to elements of the core lattice,

and “vertex” for the elements of the multilayer graph.



and any non-leaf node has at least one and at most |L| children.
Moreover, every level i contains all cores whose coreness-vector
components sum to i .

Solving the Multilayer Core Decomposition problem is

hence equivalent to building the core lattice of the input graph.

The efficient methods we present next are all based on smart core-

lattice building strategies that extract cores from smaller subgraphs,

while also attempting to minimize the visit/computation of unnec-

essary (i.e., empty/non-distinct) cores.

3.2 Breadth-first algorithm
Two interesting corollaries can be derived from Fact 1. First, any

non-empty k-core is necessarily contained in the intersection of all

its father nodes of the core lattice. Second, any non-empty k-core
has exactly as many fathers as the number of non-zero components

of its coreness vector k:

Corollary 1. Given a multilayer graph G, let C be a core of G
and F (C ) be the set of fathers of C in the core lattice of G. It holds
that C ⊆

⋂
Ĉ ∈F (C ) Ĉ .

Proof. By definition of core lattice, the coreness vector of all

father cores F (C ) of C is dominated by the coreness vector of

C . Thus, according to Fact 1, it holds that C ⊆ C ′, ∀C ′ ∈ F (C ).
Assume a vertex u <

⋂
Ĉ ∈F (C ) Ĉ , u ∈ C exists. This implies that

there exists a father coreC ′ ∈ F (C ) such thatC ⊈ C ′, thus leading
to a contradiction. □

Corollary 2. Given a multilayer graph G, let C be a core of G
with coreness vector k = [kℓ]ℓ∈L , and F (C ) be the set of fathers ofC
in the core lattice of G. It holds that |F (C ) | = |{kℓ : ℓ ∈ L,kℓ > 0}|.

Proof. By definition of core lattice, a coreC at level i is assigned a
coreness vector whose components sum to i , while the fathers F (C )
of C have coreness vector whose components sum to i − 1. Then,

the coreness vector of a father of C can be obtained by decreasing

a non-zero component of the coreness vector of C by one (zero

components would lead to negative coreness vector components,

thus they do not count). This means that the number of fathers of

C is upper-bounded by the non-zero components of its coreness

vector. More precisely, the number of fathers of C is exactly equal

to this number, as, according to Corollary 1, no father of C can be

empty, otherwise C would be empty too and would not be part of

the core lattice. □

The above corollaries pave the way to a breadth-first search

building strategy of the core lattice, where cores are generated

level-by-level by properly exploiting the rules in the two corollaries

(Algorithm 2). Although the worst-case time complexity of this

bfs-ml-cores method remains unchanged with respect to the naïve

algorithm, the bfs method is expected to be much more efficient

in practice, due to the following main features: (i) cores are not
computed from the initial graph every time, but from amuch smaller

subgraph given by the intersection of all their fathers; (ii) in many

cases, i.e., when the rule in Corollary 2 (which can be checked in

constant time) arises, no overhead due to the intersection among

father cores is required; (iii) the number of empty cores computed

is limited, as no empty core may be generated from a core that has

already been recognized as empty.

Algorithm 1 k-core

Input: A multilayer graph G = (V , E, L), a set S ⊆ V of vertices, an

|L |-dimensional integer vector k = [kℓ]ℓ∈L .

Output: The k-core Ck of G .

1: while ∃u ∈ S, ∃ℓ ∈ L : deдS (u, ℓ) < kℓ do
2: S ← S \ {u }
3: Ck = S

Algorithm 2 bfs-ml-cores

Input: A multilayer graph G = (V , E, L).
Output: The set C of all non-empty multilayer cores of G .

1: C←∅, Q← {[0]|L | }, F ([0]|L | )←∅ {F keeps track of father nodes}

2: while Q , ∅ do
3: dequeue k = [kℓ]ℓ∈L from Q
4: if | {kℓ : kℓ > 0} | = |F (k) | then {Corollary 2}

5: F∩ ←
⋂
F ∈F (k) F {Corollary 1}

6: Ck ← k-core(G, F∩, k) {Algorithm 1}

7: if Ck , ∅ then
8: C←C ∪ {Ck }

9: for all ℓ ∈ L do {enqueue child nodes}

10: k′ ← [k1, . . . , kℓ + 1, . . . , k |L |]
11: enqueue k’ into Q
12: F (k′) ← F (k′) ∪ {Ck }

3.3 Depth-first algorithm
Although being much smarter than the naïve method, bfs-ml-cores
still has some limitations. First, it visits every core as many times as

the number of its fathers in the core lattice. Also, as a second limi-

tation, consider a path P of the lattice connecting a non-leaf node

to a leaf by varying the same ℓ-th component of the corresponding

coreness vectors. It is easy to see that the computation of all cores

within P with bfs-ml-cores takes O ( |P | × ( |E | + |V | × |L|)) time, as

the core-decomposition process is re-started at every level of the lat-

tice. This process can in principle be performed more efficiently, i.e.,

so as to take O ( |P |+ |E |+ |V | × |L|) time, as it actually corresponds

to (a simple variant of) a single-layer core decomposition.

To address the two above cons, we propose a method perform-

ing a depth-first search on the core lattice. The method, dubbed

dfs-ml-cores (Algorithm 3), iteratively picks a non-leaf core k =
[k1, . . . ,kℓ , . . . ,k |L |] and a layer ℓ such that kℓ = 0, and computes

all cores [k1, . . . ,kℓ + 1, . . . ,k |L |], . . . , [k1, . . . ,Kℓ , . . . ,k |L |] with

a run of the CoreDecomposition(G,Ck, k, ℓ) subroutine.4

A side effect of this strategy is that the same core may be com-

puted multiple times. As an example, in Figure 2 the (1, 2, 0)-core
is computed by core decompositions initiated at both cores (1, 0, 0)
and (0, 2, 0). To reduce (but not eliminate) these multiple core com-

putations, the dfs-ml-cores method exploits the following result:

Theorem 3. Given a multilayer graph G = (V ,E,L), let

[ℓ1, . . . , ℓ |L |] be an order defined over set L. Let Q0 = {[0] |L | }, and,

∀i ∈ [1..|L|], let Qi = {k′ ∈ CoreDecomposition(G,Ck, k, ℓ) |
k ∈ Qi−1, ℓ ∈ (ℓi ..ℓ |L |],kℓ = 0} and Ci = {k′ ∈
CoreDecomposition(G,Ck, k, ℓ) | k ∈ Qi−1, ℓ ∈ [ℓ1..ℓi ],kℓ = 0}.

The set C = {Ck | k ∈
⋃ |L |
i=0

Qi ∪
⋃ |L |
i=1

Ci } is the multilayer core

decomposition of G.

4
Specifically, the CoreDecomposition subroutine returns cores corresponding to all

coreness vectors obtained by varying the ℓ-th component of k within [0..Kℓ ]. In

addition, it discards vertices violating the coreness condition specified by vector k, i.e.,
vertices whose degree in some layer

ˆℓ , ℓ is less than the
ˆℓ-th component of k.



Algorithm 3 dfs-ml-cores

Input: A multilayer graph G = (V , E, L).
Output: The set C of all non-empty multilayer cores of G .

1: C← {V }, R ← L, Q← {[0]|L | }, Q′ ← ∅
2: while R , ∅ do
3: remove a layer from R
4: for all k ∈ Q do
5: ∀ℓ ∈R s.t. kℓ = 0 : Q′ ← Q′ ∪CoreDecomposition(G, Ck, k, ℓ)
6: ∀ℓ ∈L \ R s.t. kℓ = 0 :

C← C ∪ {Ck′ | k′ ∈ CoreDecomposition(G, Ck, k, ℓ) }
7: C← C ∪ {Ck | k ∈ Q′ }, Q← Q′, Q′ ← ∅

Proof. The multilayer core decomposition of G is formed by the

union of all non-empty and distinct cores of all paths P of the

lattice connecting a non-leaf node to a leaf by varying the same

ℓ-th component of the corresponding coreness vectors.

Since some of the paths overlap, all cores of the paths Pi , whose

coreness vectors k′ = [k ′
ℓ
]ℓ∈L have i non-zero components, i.e.,

whose coreness vectors k′ are in Qi ∪ Ci = {k′ : |{k ′
ℓ

: ℓ ∈ L,k ′
ℓ
>

0}| = i}, are derived by executing single-layer core decompositions

initiated at a subset of cores of the paths Pi−1, whose coreness

vectors k = [kℓ]ℓ∈L have i − 1 non-zero components. Such a subset

of cores is represented by the set of coreness vectors Qi−1 = {k :

|{kℓ : ℓ ∈ [ℓ2..ℓ |L |],kℓ > 0}| = i − 1}, i.e., the set of coreness

vectors k whose number of non-zero components corresponding

to layers within [ℓ2..ℓ |L |] is equal to i − 1. In addition, single-layer

core decompositions for the layers where kℓ , 0 are avoided, since

it is equivalent to visit cores in Pi−1.

As a result, the set {Ck | k ∈
⋃ |L |
i=0

Qi ∪
⋃ |L |
i=1

Ci } correctly
contains all possible coreness vectors of the core lattice. □

Referring to the pseudocode in Algorithm 3, the result in Theo-

rem 3 is implemented by keeping track of a subset of layers R ⊆ L.
At the beginning R = L, and, at each iteration of the main cycle,

a layer ℓ is removed from it. The algorithm is independent of the

removal order. Set Q keeps track of (the coreness vector of) all

lattice nodes where the current single-layer core-decomposition

processes need to be run from. Q′ stores the (coreness vector of)
cores computed from each node in Q and for each layer within R,
while also forming the basis of Q for the next iteration.

In summary, compared to bfs-ml-cores, the dfs method reduces

both the time complexity of computing all cores in a path P from a

non-leaf node to a leaf of the core lattice (from O ( |P | × ( |E | + |V | ×
|L|)) to O ( |P | + |E | + |V | × |L|)), and the number of times a core is

visited, which may now be smaller than the number of its fathers.

On the other hand, dfs-ml-cores comes with the aforementioned

issue that some cores may be computed multiple times (while in bfs-

ml-cores every core is computed only once). Furthermore, cores are

computed starting from larger subgraphs, as intersection among

multiple fathers can not exploited.

3.4 Hybrid algorithm
The ultimate output of both bfs-ml-cores and dfs-ml-cores cor-
rectly corresponds to all distinct cores of the input graph and the

corresponding maximal coreness vectors.
5
Nevertheless, none of

these methods is able to skip the computation of non-distinct cores.

5
Pseudocodes in Algorithms 2 and 3 guarantee this as cores are added to a set C that

does not allow duplicates. Any real implementation can easily take care of this by

checking whether a core is already in C, and update it in case the corresponding

coreness vector contains the previously-stored one.

Algorithm 4 hybrid-ml-cores

Input: A multilayer graph G = (V , E, L).
Output: The set C of all non-empty multilayer cores of G .

1: Q← {[0]|L | }, F ([0]|L | )←∅ {F keeps track of father nodes}

2: Q′←
⋃

ℓ∈LCoreDecomposition(G,V ,[0]|L |, ℓ) {looked-ahead cores}

3: C← {Ck | k ∈ Q′ }
4: while Q , ∅ do
5: dequeue k = [kℓ]ℓ∈L from Q
6: if | {kℓ : kℓ > 0} | = |F (k) | ∧ k < Q′ then {Corollary 2}

7: F∩ ←
⋂
F ∈F (k) F {Corollary 1}

8: Ck ← k-core(G, F∩, k) {Algorithm 1}

9: if Ck , ∅ then
10: C←C ∪ {Ck }

11: dµ (Ck) ← [µ (Ck, ℓ)]ℓ∈L {look-ahead mechanism (Cor. 3)}

12: Q′ ← Q′ ∪ {k′ | k ≤ k′ ≤ dµ (Ck) }
13: if k ∈ Q′ then
14: for all ℓ ∈ L do {enqueue child nodes}

15: k′ ← [k1, . . . , kℓ + 1, . . . , k |L |]
16: enqueue k’ into Q
17: F (k′) ← F (k′) ∪ {Ck }

Indeed, both methods need to compute every coreC as many times

as the number of its coreness vectors in order to guarantee com-

pleteness. To address this limitation we devise a further method

where the main peculiarities of both bfs-ml-cores and dfs-ml-cores
are joined into a “hybrid” lattice-visit strategy. This hybrid-ml-

coresmethod exploits the following corollary of Theorem 1, stating

that the maximal coreness vector of a core C is given by the vector

containing the minimum degree of a vertex in C for each layer:

Corollary 3. Given a multilayer graph G = (V ,E,L), the max-

imal coreness vector of a multilayer core C of G corresponds to the

|L|-dimensional integer vector dµ (C ) = [µ (C, ℓ)]ℓ∈L .

Proof. By Definition 2, vector dµ (C ) is a coreness vector of C .
Assume that dµ (C ) is not maximal, meaning that another coreness

vector k = [kℓ]ℓ∈L dominating dµ (C ) exists. This implies that

kℓ ≥ µ (C, ℓ), and ∃ ˆℓ ∈ L : k
ˆℓ
> µ (C, ˆℓ). By definition of multilayer

core, all vertices in C have degree larger than the minimum degree

µ (C, ˆℓ) in layer
ˆℓ, which is a clear contradiction. □

Corollary 3 gives a rule to skip the computation of non-distinct

cores: given a core C with coreness vector k = [kℓ]ℓ∈L , all cores

with coreness vector k′ = [k ′
ℓ
]ℓ∈L such that ∀ℓ ∈ L : kℓ ≤ k ′

ℓ
≤

µ (C, ℓ) are guaranteed to be equal toC and do not need to be explic-

itly computed. For instance, in Figure 2, assume that the min-degree

vector of the (0, 0, 1)-core is (0, 1, 2). Then, cores (0, 0, 2), (0, 1, 1),
and (0, 1, 2) can immediately be set equal to the (0, 0, 1)-core. The
hybrid-ml-cores algorithm we present here (Algorithm 4) exploits

this rule by performing a breadth-first search equipped with a

“look-ahead” mechanism resembling a depth-first search. Moreover,

hybrid-ml-cores starts with a single-layer core decomposition for

each layer so as to have more fathers early-on for intersections.

Cores interested by the look-ahead rule are still visited and stored in

Q′, as they may be needed for future core computations. However,

no further computational overhead is required for them.

3.5 Discussion
We already discussed (in the respective paragraphs) the strengths

and weaknesses of bfs-ml-cores and dfs-ml-cores: the best among

the two is determined by the peculiarities of the specific input

graph. On the other hand, hybrid-ml-cores profitably exploits the



main nice features of both bfs-ml-cores and dfs-ml-cores, thus
is expected to outperform both methods in most cases. However,

in those graphs where the number of non-distinct cores is lim-

ited, the overhead due to the look-ahead mechanism can make the

performance of hybrid-ml-cores degrade.
In terms of space requirements, bfs-ml-cores needs to keep in

memory all those cores having at least a child in the queue, i.e., at

most two levels of the lattice (the space taken by a multilayer core

is O ( |V |)). The same applies to hybrid-ml-cores with the addition

of the cores computed through single-layer core decomposition

and look-ahead, until all their children have been processed. dfs-

ml-cores instead requires to store all cores where the single-layer

core-decomposition process should be started from, both in the

current iteration and the next one. Thus, we expect dfs-ml-cores
to take more space than bfs-ml-cores and hybrid-ml-cores, as in
practice the number of cores to be stored should be more than the

cores belonging to two lattice levels.

4 EXPERIMENTS
In this section we present experiments to (i ) compare the proposed

algorithms in terms of runtime, memory consumption, and search-

space exploration; (ii ) characterize the output core decompositions.

Datasets. We select publicly-available real-world multilayer net-

works, whose main characteristics are summarized in Table 1.

Homo6 and SacchCere6
are networks describing different types

of genetic interactions between genes in Homo Sapiens and Sac-

charomyces Cerevisiae, respectively. ObamaInIsrael6 represents

different types of social interaction (e.g., re-tweeting, mentioning,

and replying) among Twitter users, focusing on Barack Obama’s

visit to Israel in 2013. Similarly,Higgs6
is built by tracking the spread

of news about the discovery of the Higgs boson on Twitter, with

the additional layer for the following relation. Friendfeed7 contains
public interactions among users of Friendfeed collected over two

months (e.g., commenting, liking, and following). FriendfeedTwitter7

is a multi-platform social network, where layers represent inter-

actions within Friendfeed and Twitter between users registered

to both platforms [17]. Amazon8 is a co-purchasing temporal net-

work, containing four snapshots between March and June 2003.

Finally, DBLP9 is derived following the methodology in [12]. For

each co-authorship relation (edge), the bag of words resulting from

the titles of all papers co-authored by the two authors is collected.

Then LDA topic modeling [10] is applied to automatically identify

a hundred topics. Among these, ten topics that are recognized as

the most relevant to the data-mining area have been hand-picked.

Every selected topic corresponds to a layer. An edge between two

co-authors in a certain layer exists if the relation between those

co-authors is labeled with the topic corresponding to that layer.

Implementation. All methods are implemented in Python (v.

2.7.12) and compiled by Cython. The experiments run on a ma-

chine equipped with Intel Xeon CPU at 2.7GHz and 128GB RAM.
10

6
http://deim.urv.cat/~manlio.dedomenico/data.php

7
http://multilayer.it.uu.se/datasets.html

8
https://snap.stanford.edu/data/

9
http://dblp.uni-trier.de/xml/

10
All code and datasets are available at https://goo.gl/8741Gs.

Table 1: Characteristics of the real-world datasets: number of ver-
tices ( |V |), number of edges ( |E |), number of layers ( |L |).

dataset |V | |E | |L | domain

Homo 18k 153k 7 genetic

SacchCere 6.5k 247k 7 genetic

DBLP 513k 1.0M 10 co-authorship

ObamaInIsrael 2.2M 3.8M 3 social

Amazon 410k 8.1M 4 co-purchasing

FriendfeedTwitter 155k 13M 2 social

Higgs 456k 13M 4 social

Friendfeed 510k 18M 3 social

Comparative evaluation. We compare the naïve baseline (for

short n) and the three proposed methods bfs-ml-cores (for short
bfs), dfs-ml-cores (dfs), hybrid-ml-cores (h) in terms of running

time, memory usage, and number of computed cores (as a measure

of the explored search-space portion). The results of this comparison

are shown in Table 2. As expected, n is the least efficient method.

Due to its excessive requirements, we could run it in reasonable

time (i.e., one week) only on the smaller datasets, where it is anyway

outperformed by our methods by 1–4 orders of magnitude. Among

the proposed methods, h achieves the best performance in most

datasets, as expected. In some cases, however, h is comparable to

bfs, thus confirming the fact that in datasets where the number

of non-distinct cores is not so large the performance of the two

methods gets closer. A similar reasoning holds between bfs and

dfs (at least with a small/moderate number of the layers, see next):

bfs is faster in most cases, but, due to the respective pros and cons

discussed in Section 2, it is not surprising that the two methods

achieve comparable performance in a number of other cases.

To test the behavior with varying the number of layers, Figure 3

shows the running times of the proposed methods on different ver-

sions of the DBLP dataset, obtained by selecting a variable number

of layers, from 2 to 10. While the performance of the three methods

is comparable up to six layers, beyond this threshold the execution

time of dfs grows much faster than bfs and h. This attests that the

pruning rules of bfs and h are more effective as the layers increase.

To summarize, dfs is expected to have runtime comparable to (or

better than) bfs and h when the number of layers is small, while h

is faster than bfs when the number of non-distinct cores is large.

The number of computed cores is always larger than the output

cores as all methods might compute empty cores or, in the case of

dfs, the same core multiple times. Table 2 shows that dfs computes

more cores than bfs and h, which conforms to its design principles.

Finally, all methods turn out to be memory-efficient, taking no

more than 1.5GB of memory.

Core-decomposition characterization. In Figure 4 (and Table 2)

we show the number of all output cores and inner-most cores ex-

tracted from each selected dataset. The number of cores differs quite

a lot from dataset to dataset, depending on dataset size, number

of layers, and density. The fraction of inner-most cores exhibits a

non-decreasing trend as the layers increase, ranging from 0.3% of

the total number of output cores (FriendfeedTwitter) to 22% (DBLP).
Figure 5 reports the distribution of number of cores, core size, and

average-degree density (i.e., number of edges divided by number of

vertices) of the subgraph corresponding to a core. Distributions are

shown by level of the lattice
11

for the SacchCere and Friendfeed
11
Recall that the lattice level has been defined in Section 3.1: level i contains all cores

whose coreness-vector components sum to i .

http://deim.urv.cat/~manlio.dedomenico/data.php
http://multilayer.it.uu.se/datasets.html
https://snap.stanford.edu/data/
http://dblp.uni-trier.de/xml/
https://goo.gl/8741Gs


Table 2: Comparative evaluation: proposed methods and baseline.
#output time memory #computed

dataset cores method (s) (MB) cores

Homo 1 845 n 1 024 27 12 112

bfs 10 26 3 043

dfs 20 27 6 937

h 9 25 2 364

SacchCere 74 426 n 19 282 55 278 402

bfs 802 34 89 883

dfs 2 117 57 223 643

h 819 35 83 978

DBLP 3 346 n 104 361 608 34 572

bfs 66 612 6 184

dfs 219 627 38 887

h 26 521 5 037

Obama 2 573 n 28 936 1 286 3 882

InIsrael bfs 184 1 299 3 313

dfs 121 1 384 3 596

h 134 1 147 2 716

Amazon 1 164 bfs 2 349 534 1 354

dfs 3 809 619 2 459

h 2 464 536 1 334

Friendfeed 76 194 bfs 47 735 215 80 664

Twitter dfs 1 523 267 80 745

h 41 599 268 76 419

Higgs 8 077 bfs 1 775 465 12 773

dfs 433 490 14 119

h 1 544 493 9 389

Friendfeed 365 666 bfs 45 568 465 546 631

dfs 12 211 591 568 107

h 37 495 490 389 323

datasets. Although the two datasets have very different scales, the

distributions exhibit similar trends. Being limited by the number of

layers, the number of cores in the first levels of the lattice is very

small, but then it exponentially grows until reaching its maximum

within the first 25− 30% visited levels. The average size of the cores

is close to the number of vertices in the first lattice level, when

cores’ degree conditions are not very strict. Then it decreases as the

number of cores gets larger, with a maximum reached when very

small cores stop “propagating” in the lower lattice levels. Finally,

the average (average-degree) density tends to increase for higher

lattice level. However, there are a couple of exceptions: it decreases

(i) in the first few levels of SacchCere’s lattice, and (ii) in the last

levels of both SacchCere and Friendfeed, where the core size starts
getting smaller, thus implying small average-degree values.

5 MULTILAYER DENSEST SUBGRAPH
In this section we showcase the usefulness of the multilayer core-

decomposition tool introduced above. Particularly, we show how

to exploit it to devise an algorithm with approximation guarantees

for multilayer densest subgraph, thus extending to the multilayer

case the intuition at the basis of the well-known
1

2
-approximation

algorithm [3, 15] for single-layer densest-subgraph extraction.

Problem definition. As discussed in Section 1.2, the densest sub-

graph of amultilayer graph should provide a good trade-off between

large density and the number of layers where such a large density is

exhibited. We achieve this with the following optimization problem:

Problem 2 (Multilayer Densest Subgraph). Given a multi-

layer graphG = (V ,E,L), a positive real number β , and a real-valued
function δ : 2

V → R+ defined as:

δ (S ) = max

L̂⊆L
min

ℓ∈L̂

|Eℓ[S]|

|S |
|L̂|β , (1)

find a subset S∗ ⊆ V of vertices that maximizes function δ , i.e.,

S∗ = arg max

S ⊆V
δ (S ).

The role of parameter β in Problem 2 is to control the impor-

tance of the two ingredients of the objective function δ , i.e., den-
sity and number of layers exhibiting such a density: the smaller

Figure 3: Runtime of the proposedmethods with varying the num-
ber of layers (DBLP dataset).

Figure 4: Number of output cores (total and inner-most).

β the larger the importance to be given to the former aspect

(density), and vice versa. Also, as a nice side effect, solving the

Multilayer Densest Subgraph problem allows for automatically

finding a set of layers of interest for the densest subgraph S∗.

Algorithms. It is easy to see that for |L| = 1 Problem 2 corre-

sponds to the traditional densest-subgraph problem in single-layer

graphs [22]. Such a problem is solvable in polynomial time, but

the time complexity of exact algorithms is Ω( |V | × |E |) [22], thus
unaffordable for large graphs. Hence, we cannot hope efficient exact

solutions to exist for Multilayer Densest Subgraph either. We

then follow the intuition coming from the single-layer setting, i.e.,

that core decomposition can provide good quality approximations.

Specifically, we devise an approximation algorithm based on the

multilayer core decomposition discussed above. The algorithm is

very simple: it computes the multilayer core decomposition of the

input graph, and, among all cores, takes the one maximizing the

objective function δ as the output densest subgraph (Algorithm 5).

Despite its simplicity, the algorithm achieves provable approxima-

tion guarantees proportional to the number of layers of the input

graph, precisely equal to
1

2 |L |β
. We next formally prove this result.

Algorithm 5 ml-densest

Input: A multilayer graph G = (V , E, L) and a real number β ∈ R+.
Output: The densest subgraph S∗ of G .

1: C← MultiLayerCoreDecomposition(G )
2: S∗ ← arg maxC∈C δ (C ) {Equation (1)}

Approximation guarantees. Let C be the core decomposition

of the input multilayer graph G = (V ,E,L) and C∗ denote

the core in C maximizing the density function δ , i.e., C∗ =
arg maxC ∈C δ (C ). Then, C∗ corresponds to the subgraph output

by the proposed ml-densest algorithm. Let also C (µ )
denote the

subgraph maximizing the minimum degree in a single layer, i.e.,

C (µ ) = arg maxS ⊆V f (S ), where f (S ) = maxℓ∈L µ (S, ℓ), while

ℓ(µ ) = arg maxℓ∈L µ (C
(µ ) , ℓ). It is easy to see thatC (µ ) ∈ C. Finally,

let S∗
sl

be the densest subgraph among all single-layer densest sub-

graphs, i.e., S∗
sl
= arg maxS ⊆V д(S ), where д(S ) = maxℓ∈L

|Eℓ [S] |

|S | ,



SacchCere Friendfeed
Figure 5: SacchCere and Friendfeed datasets: distribution of num-
ber of cores (top), average core size (middle), and average average-
degree density of a core (bottom) to the core-lattice level.

and ℓ∗ be the layer where S∗
sl

exhibits its largest density, i.e.,

ℓ∗ = arg maxℓ∈L
|Eℓ [S∗

sl
] |

|S∗
sl
|

. We start by introducing the follow-

ing two lemmas that can straightforwardly be derived from the

definitions of C∗, C (µ )
, S∗
sl
, ℓ(µ ) , and ℓ∗:

Lemma 1. δ (C∗) ≥ δ (C (µ ) ).

Proof. By definition, C (µ )
is a multilayer core described by

(among others) the coreness vector k = [kℓ]ℓ∈L with kℓ (µ ) =

maxℓ∈L µ (C
(µ ) , ℓ), and kℓ = 0, ∀ℓ , ℓ(µ ) . Then C (µ ) ∈ C. As

C∗ = arg maxC ∈C δ (C ), it holds that δ (C
∗) ≥ δ (C (µ ) ). □

Lemma 2. δ (S∗) ≤
|Eℓ∗ [S

∗
sl

]|

|S∗
sl
|
|L|β .

Proof.

δ (S∗) = max

L̂⊆L
min

ℓ∈L̂

|Eℓ[S∗]|

|S∗ |
|L̂|β ≤ max

ℓ∈L

|Eℓ[S∗]|

|S∗ |
|L|β ≤

|Eℓ∗ [S
∗
sl

]|

|S∗
sl
|
|L|β . □

The following further lemma shows a lower bound on the mini-

mum degree of a vertex in S∗
sl
:

Lemma 3. µ (S∗
sl
, ℓ∗) ≥

|Eℓ∗ [S
∗
sl

]|

|S∗
sl
|

.

Proof. As S∗
sl

is the subgraph maximizing the density in layer

ℓ∗, removing the minimum-degree node from S∗
sl

cannot increase

that density. Thus, it holds that:

Figure 6: Multilayer densest-subgraph extraction (Homo and
Higgs datasets): minimum average-degree density in a layer, num-
ber of selected layers, size, and objective-function value δ of the out-
put densest subgraphs with varying β .

|Eℓ∗ [S
∗
sl

]|

|S∗ |
≥
|Eℓ∗ [S

∗
sl

]| − µ (S∗
sl
, ℓ∗)

|S∗
sl
| − 1

⇔ µ (S∗
sl
, ℓ∗) ≥ |Eℓ∗ [S

∗
sl

]|
|S∗
sl
| − 1

|S∗
sl
|
− |Eℓ∗ [S

∗
sl

]|

⇔ µ (S∗
sl
, ℓ∗) ≥

|Eℓ∗ [S
∗
sl

]|

|S∗
sl
|
. □

The approximation factor of the proposed ml-densest algorithm
is ultimately stated in the next theorem:

Theorem 4. δ (C∗) ≥ 1

2|L|β
δ (S∗).

Proof.

δ (C∗) ≥ δ (C (µ ) ) {Lemma 1}

≥ max

ℓ∈L

|Eℓ[C (µ )
]|

|C (µ ) |
1
β = max

ℓ∈L

|Eℓ[C (µ )
]|

|C (µ ) |
{Equation (1)}

≥
1

2

max

ℓ∈L
µ (C (µ ) , ℓ) {as avg degree ≥ min degree}

=
1

2

µ (C (µ ) , ℓ(µ ) ) {by definition of C (µ ) }

≥
1

2

µ (S∗
sl
, ℓ∗) {optimality of C (µ )

w.r.t. min degree}

≥
1

2

|Eℓ∗ [S
∗
sl

]|

|S∗
sl
|

{Lemma 3}

≥
1

2|L|β
δ (S∗). {Lemma 2}

□

When β = 0 and L̂ = L (instead of being any subset of L) Prob-
lem 2 corresponds to the densest-common-subgraph problem for-

mulated by Jethava et al. [24], which asks for a subgraphmaximizing

the minimum average-degree density over all layers. It is straight-

forward to see that Theorem 4 carries over to this case and thus

the proposed ml-densest algorithm achieves a
1

2
-approximation

guarantee for the Jethava et al.’s formulation.



Figure 7: Multilayer densest subgraph extracted by Algorithm 5
from the DBLP dataset (β = 2.2).

5.1 Multilayer densest subgraph: experiments
We experimentally evaluate our ml-densest algorithm (Algorithm 5)

on the datasets in Table 1. Figure 6 reports the results – minimum

average-degree density in a layer, number of selected layers, size,

objective-function value δ – on the Homo and Higgs datasets, with
varying β . The remaining datasets, which we omit due to space

constraints, exhibit similar trends on all measures.

The trends observed in the figure conform to what expected: the

smaller β , the more the objective function privileges solutions with

large average-degree density in a few layers (or even just one layer,

for β close to zero). The situation is overturned with larger values of

β , where the minimum average-degree density drops significantly,

while the number of selected layers stands at 6 for Homo and 4 for

Higgs. In-between β values lead to a balancing of the two terms of

the objective function, thus giving more interesting solutions. Also,

by definition, δ as a function of β draws exponential curves.

Finally, as anecdotal evidence of the output of Algorithm 5, in

Figure 7 we report the densest subgraph extracted from DBLP. The
subgraph contains 10 vertices and 5 layers automatically selected

by the objective function δ . The minimum average-degree density

is encountered on the layers corresponding to topics “graph” and

“algorithm” (green and yellow layers in the figure), and is equal

to 1.2. The objective-function value is δ = 41.39. Note that the

subgraph is composed of two connected components. In fact, like

the single-layer case, multilayer cores are not necessarily connected.

6 CONCLUSIONS
The contribution of this work is twofold: (1) develop efficient algo-

rithms for the intrinsically exponential problem of core decomposi-

tion of a multilayer graph; (2) study densest-subgraph extraction

in multilayer graphs as a proper optimization problem trading off

between high density and layers exhibiting high density, and show

how core decomposition can be used to approximate this problem

with quality guarantees.
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