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ABSTRACT

We study the problem of anticipating user search needs,
based on their browsing activity. Given the current web
page p that a user is visiting we want to recommend a small
and diverse set of search queries that are relevant to the
content of p, but also non-obvious and serendipitous.

We introduce a novel method that is based on the content
of the page visited, rather than on past browsing patterns
as in previous literature. Our content-based approach can
be used even for previously unseen pages.

We represent the topics of a page by the set of Wikipedia
entities extracted from it. To obtain useful query suggestions
for these entities, we exploit a novel graph model that we call
EQGraph (Entity-Query Graph), containing entities, queries,
and transitions between entities, between queries, as well as
from entities to queries. We perform Personalized PageRank
computation on such a graph to expand the set of entities
extracted from a page into a richer set of entities, and to
associate these entities with relevant query suggestions. We
develop an efficient implementation to deal with large graph
instances and suggest queries from a large and diverse pool.

We perform a user study that shows that our method pro-
duces relevant and interesting recommendations, and out-
performs an alternative method based on reverse IR.

Categories and Subject Descriptors

H.3 [Information Storage and Retrieval]: H.3.3 Infor-
mation Search and Retrieval.

Keywords
Query Suggestions, Implicit Search, Serendipity, Entity Ex-
traction.

1. INTRODUCTION

Exploring the Web is often a serendipitous experience,
where users with no pre-existing search objective meander
from topic to topic, sometimes discovering unexpected, sur-
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Machu Picchu YasoO! —

From Wikipedia, the free rafting the urubamba river

Machu Picchu (Spanish
pronunciation: [matfu piktfu], Quechua:
Machu Picchu [matfu pixtfu, "Old Peak")
is a pre-Columbian 15th-century Inca site
located 2,430 metres (7,970 ft) above sea
level.l"I2] Machu Picchu is located in the
Cusco Region of Peru, South America. It
is situated on a mountain ridge above the
Urubamba Valley in Peru, which is 80
kilometres (50 mi) northwest of Cusco and
through which the Urubamba River flows

Also try: rafting the urubamba river pictures

Rafting In Urubamba River Tour, Cusco Peru Adventure
peru gateway travel The BEST and most informative site on Peru
Lima, Machu Picchu, Cusco, Cuzco and all of Peru. Use our unique
Wi peru-explorer.comrafting_urubamba htm -

Rafting The Urubamba River - Image Results
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Figure 1: Example of a suggestion produced by
our method in our experiments: when reading
the Wikipedia page about Machu Picchu, a pre-
Columbian Inca site in Peru, we suggest to the user
a query about rafting the Urubamba, the river that
flows in the valley where Machu Picchu is located.

prising, and interesting information [16]. Such serendipitous
search encounters can be extremely enriching for the users,
as they may stimulate their thinking to arrive to particular
creative insights [2, 32]. In this scenario, it is interesting
to analyze the class of web search queries that are triggered
by the content of a previously read web page. For exam-
ple, while reading a news article about the 2012 presidential
election results in France, the user might want to read more
about the new president and his financial policies, thus is-
suing a query such as “francois hollande financial policies”.
Figure 1 shows a real example from our experiments.

In this paper we tackle the problem of anticipating such
newly created information needs. More concretely, given
the current web page p that a user is visiting we want to
recommend a small and diverse set of search queries that are
relevant to the content of p, non-obvious and serendipitous.

Observe that this problem is not just a web search problem
in reverse, as we are not trying to identify queries that would
lead to the page p being ranked highly in the result list.
Such queries are mostly obvious given the content of the
page, and this is not desirable for our application. Our goal
is to identify queries that stem from the page, rather than
queries that lead to the page.

The problem of understanding users’ intent and support-
ing them in the formulation of web search queries has been
studied extensively over the last years [3, 4, 6, 13, 30]. How-
ever, the standard problem studied is that of recommending
new related queries that refine a given search query. In other
terms, in the traditional context it is assumed that the user
has already explicitly given an indication concerning her in-
tent through a (possibly incomplete) web search query. In
this perspective the provided recommendations are passive,



in the sense that they only come after a user has submitted
one or more queries to a search engine. The reasons behind
these queries and what triggered the information need are
not taken into account.

Instead, in the scenario we consider in this paper, the user
does not need to formulate a query that represents explic-
itly an information need. The idea is that the user is picked
up at an earlier stage during the search process, when she
is reading a web page and, potentially, she has not even
yet conceived the thought of issuing a web search query at
all. The motivation for considering such a scenario is that
many information needs of web users are actually triggered
by what they browse. This particularly holds for informa-
tive pages, such as news and blogs: whenever a user finds
something interesting or unclear while reading a page, she
might want to go deeper in the matter and, to obtain further
information, she might formulate a query.

A recent work by Cheng et al. [10] has proposed to ex-
ploit data gathered from search logs and browsing logs to
actively predict users’ query intent based on the web pages
they browse. The model proposed by Cheng et al. is based
on the frequent patterns of (page, query) transitions. The
basic idea is that of exploiting “the wisdom of the crowd™ if
after visiting a particular page, many users continue with the
same query then the original page is likely to “trigger” the
query. One main limitation of this approach is that, being
based on frequent patterns, it is more effective for popular
pages that have been seen many times by many different
users, while it is inherently inapplicable to previously un-
seen pages. Unfortunately, as discussed above, the kind of
pages that are more likely to be an interesting playground
for these recommendations are informative pages which are
very dynamical in nature and usually have a short life: from
few hours to few days. Therefore it is important to develop
methods for recommending queries even for new pages.

In this paper we tackle such a goal, by focusing on the
content of pages. In particular, given any web page, we build
a succinct representation of its subject matter by extracting
the main concepts described or discussed in it, in the form of
Wikipedia entities. With the aim of obtaining relevant and
interesting query recommendations for the entities contained
in a page, we devise a novel graph model, which we call
EQGraph (Entity-Query Graph).

Our model extends the well-known Query-Flow graph [5].
It consists of two distinct sets of nodes, namely Wikipedia
entity nodes and query nodes, and three different sets of
arcs: entity-entity, query-query, and entity-query. The
query-query connections are akin to their counterpart in the
Query-Flow graph: the presence of a directed arc between
two query nodes indicates a sufficiently high likelihood of
submitting the second query after having issued the first
one. In the EQGraph each entity is connected to all the
queries that contain it. Finally, the entity-entity transitions
are equivalent to query-flow transitions at the conceptual
level of entities. We draw a directed arc between two enti-
ties if a user who issued a query related to the first entity
is likely to search for the second entity. We derive these
entity-entity transitions from the query-flow transitions by
aggregating transitions that are related to the same entities.

We leverage the EQGraph to recommend interesting
queries for web pages. We start from the seed set of en-
tities contained in the page. To ensure that the seed set
contains a sufficiently large number of concepts, we expand

the initial set of entities by performing Personalized PageR-
ank computations in the subgraph of the EQGraph induced
by all the entity nodes.

In the EQGraph, the entities of interest for a page are
connected to the queries that contain them. However, we
do not build our final query recommendations for the page
by simply looking at these queries. Instead we perform a
Personalized PageRank computation for the expanded set
of entities in the full EQGraph.

We could use a textual representation of the entities to
provide synthetically generated queries. However, we decide
to employ real queries to leverage the wisdom of the crowd.
Queries that are pointed by multiple entities are more likely
to be interesting because they are at the intersection of dif-
ferent topics in a page. The EQGraph naturally captures
this intuition: if two entities are related, there will likely be
a query that is pointed by both entities.

The EQGraph can be huge. For our experiments, we have
built an instance of the graph containing several hundreds
of millions nodes and arcs. Running Personalized PageRank
computations on such a large graph is potentially a seri-
ous performance bottleneck of our query recommendation
method. To perform these computations in an efficient and
scalable manner, we develop a Giraph® implementation of
the Personalized PageRank algorithm. Giraph is a Hadoop-
based framework for running graph algorithms on large-scale
data in parallel by distributing the load on a large number
of computers. It is based on the Bulk Synchronous Parallel
(BSP) model of computation [34].

We test our method on a large EQGraph extracted from a
recent (2012) sample of a Yahoo! query log . We produce
query recommendations for a set of 150 pages sampled from
Wikipedia, Yahoo! News and Yahoo! Finance. We evaluate
the quality of the produced recommendations by performing
a user study, and find that our method produces relevant and
non-obvious suggestions.

The main contributions of this paper are the following:

e We introduce the EQGraph as a novel object. This object
enriches the standard Query-Flow graph [5] with entity
nodes. We describe this graph in detail as it has inter-
esting properties in its own right and could be applied
to other problems.

e We present a novel method for anticipating information
needs that arise from the content of pages that people are
browsing. Our method is based on Personalized PageR-
ank computation over the EQGraph.

o We use Wikipedia entities to represent the information
items contained in web pages. By leveraging entities,
our model is able to generate query recommendations
for previously unseen pages.

e We provide an efficient implementation that can deal
with very large graphs. We develop a Giraph implemen-
tation of the Personalized PageRank algorithm, which
could be useful for many other applications.

e We perform a user study that shows that our recom-
mendations are relevant for the content of the page, and
that our method based on the EQGraph outperforms an
alternative baseline based on reverse IR.

The rest of this paper is organized as follows. Section 2
introduces the basic concepts for the EQGraph, which is then
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presented in Section 3. Section 4 describes how we extract
entities from pages and queries, how we expand the initial
set of entities extracted from a page, and how we produce
the suggestions. In Section 5 we assess the quality of the
recommendations produced by our method via a user study.
Section 6 reviews related literature and Section 7 concludes.

2. PRELIMINARIES

In the following, we first introduce the basic elements of
our model, namely, entities, queries, and the Query-Flow
graph. Then we describe the EQGraph in the next section.

Entities. We aim at suggesting relevant and interesting
queries to a user browsing a web page. To do so, we need a
way to effectively represent the aboutness of a page, i.e., the
set of topics that the page is related to.

The standard approach to this problem requires to per-
form two tasks: automatic keyword extraction and word
sense disambiguation. The former task identifies the sen-
tences in the input text that capture the relevant concepts
discussed in the page. The latter task aims at finding the
correct interpretation of any such sentence, thus linking it
to the actual concept it represents.

Following the state of the art [14, 17, 24, 25, 26], we per-
form the sense disambiguation task by linking phrases ex-
tracted from web pages to Wikipedia articles. We dub entity
any concept (person, place, event, etc.) that is defined and
described in a Wikipedia page. This choice implicitly limits
the set of concepts that we can represent in a web page to
the ones that have a Wikipedia page describing them.

We believe that Wikipedia provides a fairly comprehensive
list of entities of interest. It is nowadays the largest and most
visited knowledge repository on the Web, with millions of
pages available in many different languages.

Query log. A query log stores information about the search
actions of the users of a search engine. The basic record
stored in a query log L is a tuple {(g;, u;, t;, Vi, C;) where: ¢;
is the submitted query, u; is an anonymized identifier for the
user who submitted the query, ¢; is a timestamp, V; is the
set of documents returned as results to the query, and C; is
the set of documents clicked by the user. In this paper we
ignore information from the results of queries (V; and C;).
A user query session, or session, is defined as a sequence of
queries of one particular user issued within a given threshold
from each other (typically 30 minutes [5]). A chain or logical
session, or mission, is a sequence of queries in the same
session that are topically coherent.
Query-Flow graph. The Query-Flow graph [5] is a graph
representation of a query log aimed at capturing interesting
knowledge about the latent querying behavior of the users,
with special focus on the sequentiality of similar queries.
The nodes of the Query-Flow graph are all the queries in
the query log £, and an arc between two queries indicates
that the two queries are likely to be part of the same search
mission, in the order given by the direction of the arc.

3. THE EQ GRAPH MODEL

We now present our novel graph model, which we call
EQGraph. The EQGraph extends the Query-Flow graph [5]
with nodes representing Wikipedia entities, and with arcs
between entities, as well as from entities to queries.

Bonchi et al. [8] have recently introduced the Term-Query
graph, which is a Query-Flow graph augmented with term
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Figure 2: Depiction of the Entity-Query Graph.

nodes, and with arcs connecting any term to the queries that
contain it. The EQGraph is based on a similar principle, but
we use Wikipedia entities rather than terms in virtue of their
deeper semantics. Entities capture the concepts of interest
for people surfing the Web with less ambiguity. They provide
a better representation of the content of a page and a more
solid base for our query suggestion task.

More formally, the EQGraph is a directed graph
G = (N, A) whose nodes and arcs are defined as follows. Let
Q denote all the queries appearing in a query log £, and &
all the entities extracted from the text of such queries. The
set of nodes N contains a node for every entity e € £, and
for every query ¢ € Q. Specifically, we denote by N the set
of entity nodes, and by Ng the set of query nodes. Thus
N = Ne UNg. The set of arcs A is given by the union of
three different sets of arcs: Ag, Ao, and Agg.

Query-to-query transitions. Arcs in Ao connect only
query nodes, and they have exactly the same semantic as in
the original Query-Flow graph model. An arc ¢; — ¢; € Ao,
with ¢;,q; € Ng, indicates that the two queries ¢; and g;
are likely to be part of the same search mission.

Arc ¢; — q; is assigned a weight wg(¢; — ¢;) repre-
senting the chaining probability that a user issues query g;
consecutively after ¢; in a same search mission. The chain-
ing probability of any transition ¢; — ¢; is computed by
extracting temporal, syntactic and session features that ag-
gregate information from all the sessions where ¢; and g;
appear consecutively, and in the given order. We discard
arcs whose chaining probability is lower than a minimum
threshold, because they represent noisy reformulations that
are not likely to be made within a given search mission.

The subgraph (Ng, Ag) is actually a Query-Flow graph.
We follow the settings of the original paper [5] to generate
the set of query-to-query arcs Ag.

Entity-to-query transitions. To extract entities from
queries we use the methodology described in the next sec-
tion. We denote by X¢(g) the set of entities extracted from
a query q. We build the set of arcs Agg by connecting each
entity to all the queries that contain it:

Aso ={e—¢q, st. e € Ng,q € Ng,e € Xe(q)}-




Any arc e — q € Agg connecting an entity e to a query ¢
is given a weight proportional to the relative frequency of
the query ¢ in the log £, with respect to all the queries that
contain e. Formally,

I A C) I
Dgitecxe(an 1)

where f(q) indicates the frequency of query g in the log L.

weole = q) =

Entity-to-entity transitions. Arcs in Ag connect only
entity nodes, and their semantic is intended to be similar to
that of arcs in Ag.

The set of entity nodes Ng¢ includes all the entities that
are contained in the queries in log £. Thus, such entities
represent individual concepts of interest, for which people
have attempted to gather relevant information by submit-
ting queries to the search engine. In general, an entity can
be contained in many different queries, while most of the
queries contain just one entity or no entity at all (due to the
fact that average query length is very short).

We draw an arc between two entities e; — e; € Ag to
indicate that there is high probability that a user who issued
one or more queries related to the concept expressed by the
first entity e;, subsequently performs one or more searches
related to the concept represented by the second entity e;.

We build the set Ag of entity-to-entity arcs starting from
the set Ag of query-to-query arcs and from the set Agg of
the arcs that connect entities to queries.

Given a single transition ¢; — ¢; € Ag, let us consider
the set of entities Xe(g;) extracted from the source query
gi, and the set of entities Xg(gq;) extracted from the target
query ¢q;. We draw an arc from each entity extracted from
the source query, to every entity extracted from the target
query. In other words, we derive from ¢; — ¢; a set of
transitions Ty, —q; = {ew = evlew € Xe(qi),e0 € Xe(q5)}-

Now let wo(g; — ;) be the weight (chaining probability)
assigned to arc ¢; — ¢; in our model. With the aim of
avoiding to excessively boost the weights assigned to arcs
involving popular entities, which may be contained in many
queries, we uniformly divide the probability wo(¢: — ¢;)
among the n - m entity-entity transitions derived from ¢; —
g;: thus every transition e, — e, € Tqiﬁqj is assigned a
probability equal to pg; —q; (ex — €v) = wa (g — g;)/(n-m).

Next, we observe that a given entity-to-entity transition
ey — €y can be derived from multiple query-to-query transi-
tions (all the ones whose source query contains e,, and whose
target query contains e, ). Let us assume that there exist r

query-to-query transitions ¢;;, — ¢i,, ¢ = 1,...,7in Ag that
originate the entity-to-entity transition e, — e,. Let us de-
note by pg; —q;, (eu — €v), i = 1,...,r, the probabilities

assigned to transition e, — e, from each of the r originat-
ing ¢;, — qi, query-to-query transitions. We aggregate these
probabilities to derive the global weight we (e, — ey) that
we assign to arc e, — e, in the EQGraph:

wp(ew +en) =1= [ (1=pa,—a, (€0 = ).
i=1,...,r
Despite the fact that Ag, which is constructed by fol-
lowing the Query-Flow graph model, does not contain self
loops, our procedure for deriving Ag¢ transitions from Ag
transitions might lead to the extraction of entity self loops,
for example, in the case where the original query-to-query
transition is a specialization. A specialization [7] is a query

reformulation that a user submits when she realizes that
her first query was too general given the information need
that she had in mind. Thus she formulates a second, more
specific query in the attempt of getting a narrower set of
results. Typically, the set of words of the specialized query
is a superset of the set of words of the first query, thus the
entities extracted from the first query are also very likely to
be extracted from the second query.

However, we do not include entity self loops in the EQ-
Graph. The scenario for which we introduce our model is
that of suggesting relevant queries for web pages, based on
the entities they contain. Further in the paper we will show
that our recommendation method exploits the entity-entity
transitions to perform a preliminary expansion of the initial
set of entities extracted from the content of a page. The goal
of this entity expansion is to overcome problems that might
be encountered when the seed set of entities is particularly
poor. We achieve this by performing Personalized PageR-
ank computations on the subgraph of the EQGraph induced
by the entity nodes, i.e., the subgraph that contains all the
entity nodes, and all the arcs between them. In the compu-
tation of Personalized PageRank, self loops could have the
effect of boosting the rank of nodes that might not be very
close to the preference vector [38].

4. RECOMMENDATION METHOD

We want to suggest to a given user who is browsing a web
page p a ranked list @ of k queries such that ¢ € @ is related
to p and non obvious.

In this paper we focus on the creation of such a list. We
also give a brief overview of the technical aspects of serving
these queries, though it is not the main focus of this work.

We decompose the task of finding a set @) of queries that
are relevant for a page p into the following subtasks:

1. Extracting a seed set of entities Xg(p) from p;
2. Expanding X¢(p) to a larger set of entities Zg(p);
3. Obtain queries ) for the expanded set of entities.

Extracting entities from text. To extract entities from
a text, which in our framework can be either a web page
or a query occurring in a search-engine query log, we first
parse the text to identify surface forms? that are candidate
mentions of Wikipedia entities. We add entity candidates
to each recognized phrase by retrieving the candidates from
an offline Wikipedia database.

To resolve each surface form to the correct Wikipedia en-
tity we apply the machine-learning approach proposed by
Zhou et al. [39]. This approach employs a resolution model
based on a rich set of both context-sensitive and context-
independent features, derived from Wikipedia and various
other data sources including web behavioral data.

We then use Paranjpe’s Aboutness ranking model [26] to
rank the obtained Wikipedia entities according to their rel-
evance for the text. This model exploits structural and vi-
sual properties of web documents, as well as user feedback
derived from search-engine click logs. Paranjpe has shown
that his approach, even when trained mainly on head web
pages, generalizes and performs well on all kinds of docu-
ments, including tail pages.

2 A surface form is any mention of an entity in the text, e.g.,
tomatoes is a surface form of the entity Tomato.



Expanding a list of seed entities. Let p denote a web
page for which we want to recommend queries. We per-
form a Personalized PageRank computation on the graph
Ge = (Ng, Ag), i.e., the subgraph of the EQGraph that con-
tains all the entities, and all the arcs between them. We
use a uniform distribution on the seed set Xg¢(p) as prefer-
ence vector. We build an expanded set of entities denoted
Z¢(p) by taking the top entities with the highest scores in
the resulting distribution.

Bonchi et al. [8] use a centerpiece subgraph computation
on a Term-Query graph rather than Personalized PageR-
ank to recommend queries related to an input query. In
the centerpiece computation, the final distribution is given
by the Hadamard product of the single seed-node distribu-
tions, rather than by their sum as in Personalized PageRank.
The choice of [8] is motivated by the fact that they use a
term-centric approach. In order to discover queries that are
actually relevant for an input query, they have to identify
queries that are related to most of the terms in the starting
query, rather than just to a few of them. As the number
of terms in a query is typically very small, this condition is
needed to filter out marginally related queries.

In our scenario the centerpiece approach is not a good
choice for two reasons. First, the number of seed-entity dis-
tributions that we have to aggregate is much larger. In our
experiments, we consider pages that contain at least 5 en-
tities, and we extract a maximum of 100 entities per page.
With so many starting points, only extremely connected en-
tities would have a non-zero product. Second, entities have
a stronger semantic value compared to terms. Terms are
more ambiguous and benefit from the disambiguation power
of the centerpiece computation. On the contrary, an entity
only needs to be relevant enough for some of the seed en-
tities to be considered relevant for a page, and thus to be
included in the expanded set. These two facts motivate our
choice of Personalized PageRank.

Obtaining queries for entities. Given the expanded set
of entities Z¢(p) obtained in the previous step, we now want
to create a list @ of k related queries to recommend to the
user. Our method is similar in spirit to the one considered
for the entity expansion step. We still perform a Personal-
ized PageRank computation, but this time on the full EQ-
Graph, by using a uniform distribution over the entities in
Z¢(p) as preference vector. We return the k query nodes
{q1,q2, .., qx} that achieve the highest scores in the result-
ing distribution.

As an alternative method, we implement a Reverse IR
approach that, given a page p, suggests those queries that
have the page in the top positions of their search-engine
result list. We represent both queries and pages by means
of TF/IDF vectors. Given a page p, we compute the cosine
similarity between its TF/IDF vector and the vector of any
query stored in the query log. We then return the top k
queries that achieve the highest similarity.

S. EXPERIMENTS

5.1 System description

We begin the section with a description of how we envi-
sion a system that employs our technique. Our objective is
to provide online query recommendations while the user is
browsing the Web.

The system consists of two parts: back-end and front-end.
The back-end is dedicated to the offline computation of the
distributions on the EQGraph. The front-end sends requests
to the back-end and shows suggested queries to the user. It
can be implemented by a browser plugin or a toolbar add-on.

Workflow. The workflow of our system is as follows. First,
the front-end extracts the textual content of the current page
and cleans it by using a service such as boilerpipe® or by
using ad-hoc rules for specific domains. The front-end then
sends a request with the cleaned content to the back-end.

The back-end receives the text and extracts relevant en-
tities from it. These entities constitute the seed set for the
query suggestion. The back-end then uses this set to query
the precomputed index of distributions over the EQGraph,
then sums the distributions to obtain the top-k queries to
suggest. This operation is very similar to answering a query
and can be implemented efficiently on the same infrastruc-
ture that a web search engine runs on.

Indexing. The EQGraph has 738627 entity nodes and
121 x 10° query nodes, so the full distribution would have
738627 x 121 x 10° ~ 89 x 10*? entries. Even by compressing
the lists the space required to store the full distribution is
prohibitive. Thus, following Bonchi et al. [8], we propose to
use approximate distributions to make our solution viable.
Approximation comes in two ways: pruning and bucketing.

Pruning. By storing only the top-p probabilities for each
entity, the space requirements are reduced from |[Ng| x [Ng|
to |[Ne| x p. The space saving depends on the condition
p < |Ng]. The price to pay is introducing some error in the
query suggested. However, this error is less critical than the
one introduced by Bonchi et al. [8] as we use Personalized
PageRank rather then centerpiece computation. In Person-
alized PageRank the final distribution is the sum of the sin-
gle entity-specific distributions, rather than their Hadamard
product. Thus even if one query is missing from the distribu-
tion of one of the entities in the seed, it can still be suggested
if it is relevant enough to another entity in such set.

Bucketing. Probabilities can be bucketed together by us-
ing buckets with exponentially increasing size, as done by
Bonchi et al. [8]. We can then save a single probability for
the whole bucket, thus greatly reducing the space occupancy.
In our case, error propagation is additive rather than mul-
tiplicative, so we have a better approximation. See Bonchi
et al. [8] for further details. Entity ids in the same bucket can
be easily compressed by using gap coding and Elias gamma
coding or similar techniques.

5.2 Building the EQGraph

We build a large EQGraph instance from a recent sample
of a Yahoo! (US) query log. We anonymize our dataset by
discarding all the queries that contain personally identifi-
able information, and by aggregating information from all
the available user query sessions, without retaining any user
identifiers. The sample we consider is very large: it con-
tains 24.3 x 10° queries (1.9 x 10° distinct), and 3.3 x 10°
transitions between queries.

Normalization. We preprocess the query log to clean
queries before presenting them to the users. We employ
the following query normalization scheme. Given a query
q occurring in the log, we remove stop words and non-
alphanumeric characters. We then apply Porter’s stemming

3http://boilerpipe-web.appspot.com



Table 1: The EQ Graph: Basic stats

Wi el | el |

| el | Meal | Mo

122421398 | 738627 |

121682771 | 202469003 | 17103835 | 40948844 | 144416324

Table 2: The EQ Graph: Average degree

da | dnrg | dng | NN | (NS | NG | outar | out s, | outng

331 | 10175 | 271 | 165 | 2315 | 152 | 165 | 7859 | 1.19

algorithm [27] and we sort the stemmed terms lexicograph-
ically for each query. As a result we obtain a normalized
query form ¢. This normalization scheme maps multiple
queries onto the same normalized form ¢ and defines an
equivalence class for queries. We thus collapse all the queries
that are in the same equivalence class onto the same query.
We choose the most frequent query inside each class as the
representative of the class. Finally, we replace every query
in the original log with the representative for its class.

Query graph. We then build Ng and Ag by applying
the standard Query-Flow graph methodology [5]. Following
the original paper, we filter the log by retaining only the
queries that have at least 5 occurrences in the log, and the
query-to-query transitions that appear at least 2 times.

Entity graph. From the query log we extract the set of
entity nodes Nz by following the approach described in Sec-
tion 4. We then proceed to create Aggo and Ag. Agg is
obtained simply by connecting every entity in Mg to all the
queries in Ng that contain it. The set of entity-to-entity
transitions Ag is derived from Ag, using the approach de-
scribed in Section 3. We discard the top 100 entities with
highest in-degree in the graph induced by the entity nodes
Ge = (Ne, Ag). These entities correspond to popular sites
such as Yahoo!, Google, Facebook, Twitter, Youtube, etc.
They are mostly derived from navigational queries, and they
are not interesting for the purposes of our work.

Altogether we obtain an EQGraph that consists of 122.4 x
10° nodes and 202.4 x 10° arcs . Tables 1, 2, and 3 provide
basic statistics about the graph. Observe that the subgraph
of the entity nodes is much denser than the subgraph of the
query nodes. Figure 3 shows the frequency distribution of
queries in the query log, which follows a typical power law.

5.3 Personalized PageRank in Giraph

Given a weighted directed graph, Personalized PageRank
is a measure of proximity or relevance of a node to a set of
query nodes. To compute this measure on the EQGraph we
implement Personalized PageRank on Giraph. Giraph is an
open-source large-scale graph-processing framework based
on Hadoop. It implements the Bulk Synchronous Parallel
model of computation on graphs. Its APIs are inspired by
the Pregel system [20].

Our implementation takes as input a directed graph, a
restart probability o and a preference vector defined on the
nodes of the graph, and generates the stationary distribution
of a random walker which restarts from a node in the graph
according to the preference vector with probability a.

We use the power iteration method to compute the final
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Figure 3: Frequency of queries in the query log

distribution. As standard practice, we set the restart prob-
ability a = 0.15 and the number of iterations to 30.

In order to reduce the memory requirements of handling
the EQGraph, we develop a compact, array-based node repre-
sentation which allows fast iteration over the arcs but makes
random access very expensive. This choice makes sense in
the case of PageRank because at each step we need to iterate
over all the arcs of each node.

Our implementation of Personalized PageRank can easily
scale to very large graphs with billions of nodes and arcs.
The code is open source, available online*, and will be inte-
grated in a future release of Giraph.

5.4 Testing

Our testset is composed of 150 pages drawn randomly
from Wikipedia, Yahoo! News, and Yahoo! Finance.

We filter out pages for which we can detect less than 5
entities. We extract the relevant textual content from each
page by using a combination of domain specific ad-hoc rules
and automatic tools for detecting templates and stripping
HTML. Finally, the textual content of each page is fed to our
entity detection module to extract entities. These entities
constitute the seed set for each page in our experiments.

We have 5142 unique entities in our testset. As described
before, our system would need to perform 5142 runs of Per-
sonalized PageRank, for the entity expansion set. However,
for our offline experiments, we leverage the property that
PageRank is additive. By setting the preference vector to a
uniform distribution over the (expanded) seed set, we need

‘https://issues.apache.org/jira/browse/GIRAPH-191



Table 3: The EQ Graph: Maximum degree

max dar | max d | max dp/g | max inmaA’ | max Ima‘ | max iy, | max outar | max outarg | max outn/g

724634 | 186162 | 724634 | 402121 | 8604

to run 150 Personalized PageRank computations per step,
one for each page.

The first round of Personalized PageRank computations
produces the expanded seed set Zg(p). We fix | Z¢(p)| = 50
and for each page p we only keep the top entities in the dis-
tribution. This pruning would not be necessary given our
offline testing methodology as there is no additional over-
head in using all of the entities. However, in a more realistic
setting, we would like to reduce the number of Personalized
PageRank computations that we need to perform and store.
Furthermore, pruning lowly related entities helps to remove
noise. Note that the entity expansion step adds entities to
the seed set only if the seed set size is less than |Z¢(p)|.

The second round of Personalized PageRank computa-
tions produces the query recommendations. We return the
top 5 query suggestions for each page. For all the pages in
our testset, we generate recommendations with our EQGraph
algorithm, and with the alternative Reverse IR method in-
troduced in section 4. We obtain 1392 distinct suggestions.

5.5 Evaluation

We ask 10 assessors® to evaluate our query recommenda-
tions. Each record given to an assessor consists of a (URL,
query) pair. The query links to a search-engine result page.
The assessor is asked to browse the starting page in order to
understand its topic, then to click on the query and read the
snippets of the result page to understand the query. Finally,
we ask the assessor to rate the relevance of the suggestion on
a 3-point scale: “Related and interesting”, “Related but ob-
vious”, “Unrelated”. The following guidelines are provided:

e Related and interesting: the query is relevant to the
content of the page and expresses a question that can-
not be fully answered by reading the web page. The
page and the query are related, and you believe that
reading the web page would raise your interest in the
topics covered by the query.

e Related but obvious: the query is equal to the title of
the page or the page is top result in the search result
page of the query. Page and query are related, but
you believe that reading the page would not raise your
interest in the query, e.g. the query does not cover any
additional aspect with respect to the page content.

e Unrelated: the query and the topics of page are clearly
unrelated. You believe it is not possible that browsing
that page may raise your interest in the query.

The assessors are also given the option of withholding judg-
ment by selecting the “Undecided” option. This choice is
designed for difficult cases or when the page is unreadable
(e.g. because the page was not available anymore).

Results. Table 4 summarizes the results of our user study.
We report aggregated values for the full testset as well as
results broken down by domain. We separate the Wikipedia

5The assessors did not include the authors of this paper.

| 402121 | 322513 | 186162 | 322513

domain from Yahoo! News and Yahoo! Finance because of
their intrinsic differences.

Wikipedia pages are an ideal case for our method: they
focus on a single topic but provide many links to continue
the exploration, they are very descriptive and easy to un-
derstand. They also have a natural affinity with our entity
extraction technique that uses Wikipedia pages as entities.

Pages from Yahoo! News and Yahoo! Finance represent a
bigger challenge: understanding them is more complex, they
present acronyms and jargon that is difficult to decipher,
they are also more compact and less descriptive. From tech-
nical standpoint, they are less structured and thus harder to
clean from HTML tags and templates, so more noise is left
in the textual representation of the pages.

EQGraph outperforms Reverse IR in all cases for the “Re-
lated and interesting” class. The fraction of interesting sug-
gestions is almost twice as much as the one provided by
the baseline for Wikipedia pages (62.7% vs. 33%), and still
relevantly higher for the full dataset (58% vs. 36.1%).

As expected, the Reverse IR baseline suggests a large
number of obvious queries. This confirms our hypothesis
that the problem we are tackling is different from a reverse
web search problem. Moreover, we prove that our method
addresses exactly the right problem: the number of obvious
queries that we suggest to the user is always below 5%.

The price to pay for this serendipity is a larger fraction
of unrelated queries. Indeed, sometimes the link between a
page and a query suggested by the EQGraph is far-fetched
and non-obvious. However, this behavior is desired, and in
line with research on recommender systems that argues that
recommendation is not a prediction task and that accuracy
is not the most important metric [21].
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Figure 4: Frequency of suggested queries

Diversity. We analyze the results of the query suggestions
in terms of diversity. Our methodology does not include any
explicit result diversification step. However, by leveraging
the EQGraph we implicitly take into account the different
topics in each page. Figure 4 shows the histogram of the
query frequencies for the results provided by our method and
the baseline. The results provided by Reverse IR contain
many highly-repeated queries, up to 50 times and beyond
(on the x axis). There are also a few popular queries with
frequency higher than 100. On the contrary, the results
obtained via the EQGraph are more diverse and spread out.
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Table 4: Results obtained with EQGraph, and with Reverse IR baseline

Testset Label EQGraph | Reverse IR
Related and interesting 62.7% 33%
Wikipedia pages Related but obvious 3.3% 41.5%
Unrelated 34% 25.5%
Related and interesting 52% 40%
Yahoo! News + Yahoo! Finance | Related but obvious 2.3% 34.3%
Unrelated 45.7% 25.7%
Related and interesting 58% 36.1%
Full testset Related but obvious 2.9% 38.4%
Unrelated 39.1% 25.5%

The highest frequency for a single query in this set is 22,
while most of the queries are singleton (note the logarithmic
scale on the y axis).

We further explore the diversity of the result sets via lex-
ical analysis. Given the result set returned for a page by
a given method, we compute the Levenshtein distance be-
tween all of the result pairs in the set. We define the lexical
diversity D of a result set for a page as the sum of all the
2=l distances:

D(p) =Y Lev(qi,q;) fori,je[l,k]Ai<]
0]

where ¢;, ¢; are the queries in the result set of page p and &
is the cardinality of the set.

We compute the lexical diversity for each page in our test-
set and for each method. Then we do a statistical analysis
of the distribution of the lexical diversity. We apply a de-
pendent t-test for paired samples to pairs of lexical diversity
coming from different methods applied to the same page.

The test shows that the lexical diversity of the queries
obtained via the EQGraph is higher than the baseline, and
is statistically significant with a confidence level of 0.1%.

Anecdotal evidence. We present example suggestions cre-
ated by both methods in Table 5. We select examples from
Wikipedia as they are easier to understand and exemplify
at best the kind of interesting queries we want to suggest.

The queries suggested by Reverse IR almost invariably
contain the title of the page in their formulation. For the
few queries that are in the form of a question, the page itself
contains the answer.

On the contrary, the queries suggested by the EQGraph
are mostly about specific aspects related to the main topic of
the page. For example the role of osteoblasts and osteoclasts
(cells that create and destroy bone tissue) in the process of
osteoporosis, a bone disease. Or in the case of Azotemia
(a condition of high level of nitrogen compounds like urea
and creatinine in the blood), about its possible causes and
symptoms such as kidney stones and osmotic diuresis.

6. RELATED WORK

Implicit and Context-Aware Search Predictions.
Cheng et al. [10] actively predict search intents from user
browsing behavior data. The basic idea is that if, after
visiting a particular page, many users often continue with
the same query then the original page is likely to “trigger”
the query. To predict such queries, they learn a model to
effectively rank such follow-up queries according to their
likelihood of being triggered by the page. They also pro-
pose an approximation algorithm to diversify the ranked

lists of queries obtained. They test their approach on large-
scale user browsing behavior data obtained from a commer-
cial search engine. Though their basic problem, identifying
queries likely to be “triggered” by a visited web page, is the
same as ours, our work differs significantly. Their approach
requires historic browsing information and is not appropri-
ate for previously unseen pages. They focus on identifying
relevant (page, query) transitions from an existing candi-
date set whereas we, with tail pages in mind, focus on the
creation of such sets in the first place.

The authors in [19] predict the next query in a session,
using both search and click information. Though many of
their features used are not applicable for previously unseen
URLs, some, such as the DMOZ category of pages visited,
are. In their experiments the best features are the previ-
ous query and the clicked URL. Their approach is largely
orthogonal to ours. We focus on content-based techniques,
not on log-based ones. Also, the problem they study has a
crucial difference: for predicting the next query, “obvious”
queries — often corresponding to repeat queries [31, 33] — are
actually good, whereas they are bad for our purposes.

Cao et al. [9] propose a hidden markov model for predict-
ing user behavior in a search session. Given a user’s session
so far, the model can predict the next query, and the urls
the user is likely to click. The hidden states in the model
describe the user’s intent, while observed variables are the
queries, and clicks on urls. The probability distributions
over queries and urls depend only on the current state, but
the state transitions depend on all previous states of the ses-
sion. Similar to the work in [10] this approach could work in
our setting given enough observed page-to-query transitions.
However, the method fails to suggest queries while browsing
tail pages, while our approach is not affected by this.

Finally, the problem of query prediction has been studied
in the context of caching [18]. In caching, the focus is less
on the user and more on the system. E.g., the system might
benefit from knowing which queries are currently trending
to cache their results, but such queries are unlikely to be of
use for the problem studied by us.

Query suggestions. There is a large body of work on the
problem of query suggestions in the context of web search
[22, 5, 15]. Though such work is clearly related, note that our
problem is not one of helping users to formulate their existing
information need. Rather we are interested in possibilities
to create such needs.

Work on query suggestions that is more closely related to
our paper includes [23]. There the authors employ “seman-
tic” information from dbpedia for the suggestions, which at
a high level is related to our use of Wikipedia entities. Sim-
ilarly, the work in [11] is related because the authors also



Table 5: Query suggestions for some Wikipedia pages

Page EQGraph Reverse IR
= the pyramidal decussation occurs in the difference between medulla and medulla oblongata
= location of middle cerebellar peduncles what does the medulla do
g somatic motor nuclei medulla
g bilateral middle cerebellar peduncle lesion medulla oblongata

cortical tissue running between the medullary pyramids parts of medulla oblongata

function of osteoblasts
osteoclast and osteoblast
vasovagal syncope
symptoms of pulmonary embolism
partial cauda equina syndrome

bone osteoporosis
osteoporosis
medicinenet.com osteoporosis
mayoclinic.com osteoporosis
osteoporosis fractures

symptoms of kidney stones
coffee and diabetes
fluid volume deficit related to osmotic diuresis
signs and symptoms of osmotic diuresis
blood urea nitrogen

Azotemia |Osteoporosis| Medulla

use content of clicked pages in constructing query sugges-
tions, differing from most of the other work in this area.
As in our paper, a random walk on a graph model where
nodes are queries is applied in [6, 5]. Finally, the work in
[30] is related due to its focus on query suggestions for in-
frequent, long-tail queries. The authors propose the use of
templates to learn rules such as “[CITY] flight” -> “[CITY]
hotel”. These rules can then be applied for previously unseen
queries such as “bertinoro flight -> bertinoro hotel”, both as
input and output, as long as “bertinoro” is identified as a
city. In future work, we will consider a similar approach
in our setting: if after reading about a person X the query
“X place of birth” is frequently suggested by our system, we
could also suggest such a query, even when it is previously
unseen for a concrete person Y.

User intent modeling. At a high level, our work is also
related to user intent modeling. Note, however, that unlike
in search-result ranking our suggestions make an effort to
influence a user’s intent, rather than merely guiding him.
Shen et al. [28] focus on the problem of exploiting implicit
user feedback to improve the accuracy of a retrieval feedback
via context-sensitive language models that combine the cur-
rent query with the interaction history (previous queries and
clicks). Again, our aim is that of suggesting the next query,
not combining its signal with previous relevance signals.
Agichtein et al. [1] show how to incorporate “user behav-
ior” to improve web search. They discuss how to merge
two distinct ranked lists, how to re-rank results or how to
incorporate the new features in a learning to rank model.
Somewhat relevant to our problem is the type of features
they use. Apart from traditional CTR information they use
information such as “are results below this one ever clicked
on the search result page”, “is this result typically found via
links”, or “what’s the average dwell time on this web page”.
In our setting, such features fail for previously unseen pages.
Zhu et al. [40] expand the use of browsing information
for web search ranking, and other applications. They in-
troduce ClickRank, an algorithm to estimate web page im-
portance from browsing information. Finally, [40] discusses
novel applications of ClickRank in providing enriched user
web search experience.
White et al. [36] present a web search interaction fea-
ture which, for a given query, provides links to web sites

creatinine
why could a creatinine would only go up
what is creatinine for
what does creatinine do
medicinenet.com creatinine

frequently visited by other users with similar information
needs. These “popular” destinations complement traditional
search results, allowing direct navigation to authoritative re-
sources. Results show that search enhanced-by-destination
suggestions outperform other approaches. In a certain sense
such “suggestions”, rather than search results, are dual to our
problem: given a page we want to suggest queries, whereas
they suggest pages for a given query.

White and Chandrasekar [35] present a comparative ora-
cle study of techniques to shortcut sub-optimal search trails
using labels derived from social bookmarking, anchor text,
query logs, and a human-computation game. The authors
show that labels can help users reach target pages efficiently,
and that shortcuts are most useful when the target is chal-
lenging to find. As such shortcuts are derived from observed
browsing behavior, similar approach would not be applicable
for our problem where we are also addressing tail pages.

Xiang et al. [37] investigate how to improve web-search
results by taking into account “context” information. For
example, if a user searches for ‘BMW’ and then for ‘jaguar’,
it is likely that he is interested in the car rather than the
cat. In this work “context” always means the previous query.
So a user submits query g:—1, clicks on some results, then
submits query ¢;. In our setting, one could try modeling the
currently browsed page as ¢:—1 and use a similar approach
to theirs, but they rely on observing transitions from q:—1
to g+ where we want to suggest such transitions.

On the general topic of query-intent modeling, [12] and
[29] are related as they, respectively, present novel meth-
ods for query clustering and query intent classification that
leverage user interaction logs.

7. CONCLUSIONS

Suggesting a small and diverse set of search queries that
are relevant to the content of the web page currently visited
by a user, and that moreover are non-obvious and serendip-
itous, is an interesting problem which has received (so far)
surprisingly little attention. In this paper we tackle such a
problem focusing on the content of the page and the entities
contained therein. Our proposal is based on a novel graph
model which enriches the Query-Flow graph with entity
nodes. Our model is content-based and can produce mean-
ingful recommendations even for previously unseen pages.



Our recommendation method is based on a two-step Per-
sonalized PageRank computation, whose goal is to expand
the set of entities extracted from a page into a richer set of
entities, and to associate the entities with relevant query sug-
gestions. We develop an efficient implementation that en-
ables our framework to deal with very large graph instances
and suggest queries from a large and diverse pool.

Our experiments show that our recommendations are rel-
evant and serendipitous, outperforming in a user study, a
method based on reverse IR. As our method is tailored
towards avoiding related-but-obvious recommendation, we
sometimes produce some unrelated suggestions. These are
easy to identify and can be filtered out by a specialized clas-
sifier: we leave this further development for future work, as
well as evaluating other expansion strategies and the effect
of parameters in the quality of recommendations.
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