
Influence Maximization with Viral Product Design

Nicola Barbieri ∗ Francesco Bonchi †

Abstract
Product design and viral marketing are two popular concepts
in the marketing literature that, although following different
paths, aim at the same goal: maximizing the adoption of
a new product. While the effect of the social network
is nowadays kept in great consideration in any marketing-
related activity, the interplay between product design and
social influence is surprisingly still largely unexplored.

In this paper we move a first step in this direction
and study the problem of designing the features of a novel
product such that its adoption, fueled by peer influence
and “word-of-mouth” effect, is maximized. We model the
viral process of product adoption on the basis of social
influence and the features of the product, and devise an
improved iterative scaling procedure to learn the parameters
that maximize the likelihood of our novel feature-aware
propagation model. In order to design an effective algorithm
for our problem, we study the property of the underlying
propagation model. In particular we show that the expected
spread, i.e., the objective function to maximize, is monotone
and submodular when we fix the features of the product
and seek for the set of users to target in the viral marketing
campaign. Instead, when we fix the set of users and try to
find the optimal features for the product, then the expected
spread is neither submodular nor monotone (as it is the
case, in general, for product design). Therefore, we develop
an algorithm based on an alternating optimization between
selecting the features of the product, and the set of users to
target in the campaign. Our experimental evaluation on real-
world data from the domain of social music consumption
(LastFM) and social movie consumption (Flixster) confirms
the effectiveness of the proposed framework in integrating
product design in viral marketing.

1 Introduction
Product design and viral marketing are two widely studied
concepts in the marketing literature. The former concept
refers to all those activities (such as market share forecasting
or estimation of customer utilities for a given set of product
features), that are aimed at designing a new product, with
the objective of maximizing the number of customers adopt-
ing the product. The latter concept refers to marketing tech-

∗Yahoo Labs, Barcelona, Spain. E-mail: barbieri@yahoo-inc.com
†Yahoo Labs, Barcelona, Spain. E-mail: bonchi@yahoo-inc.com

niques which are able to take advantage of peer influence
among customers, through modern social media and com-
munication platforms. The idea is to exploit a pre-existing
social network in order to increase brand awareness or to
achieve other marketing objectives (such as product sales)
through self-replicating viral processes.

The share-of-choice (SOC) problem is the combinato-
rial optimization problem at the basis of product design. In
the SOC problem we are given a set of product features F
with their levels (e.g., the size of the screen of a laptop), and
a set of customers V = {v1, v2, . . . , vn}. Customers have
different utilities for the feature levels of a product (called
part-worth utilities in the marketing literature [9]): we let
uif,l denote the part-worth utility for customer vi if level l is
chosen for feature f ∈ F . Moreover we are given a “hurdle”
hi for each user vi, representing the utility value of equilib-
rium between making or not making the purchase.

By denoting with xf,l ∈ {0, 1} an indicator variable,
which is 1 if the level l has been selected for the feature f
and zero otherwise, the assumed adoption model is that a
customer vi decides to adopt the product when the sum of
utilities exceeds her hurdle:

(1.1)
∑
f∈F

∑
l

xf,l · uif,l ≥ hi.

The objective is to select the feature levels for a new product
so to maximize the number of customers that will adopt it.

The basic computational problem behind viral mar-
keting instead, is that of selecting the set of initial users
that are more likely to influence the largest number of
users in a social network, known as influence maximiza-
tion (MAXINF) [11]. Given a directed social network G =
(V,E), where a link (vj , vi) ∈ E means that vj can poten-
tially influence vi, and given a budget k, the problem requires
to find k “seed” nodes in the network, such that by activating
them we can maximize the expected number of nodes that
eventually get activated, according to a probabilistic propa-
gation model that governs how influence propagates through
the network.

One of the most studied propagation models is the
linear threshold (LT) model. In this model at a given
timestamp, each node is either active (a customer which
already purchased the product) or inactive, and each node’s
tendency to become active increases monotonically as more
of its neighbors become active. An active node never

becomes inactive again. In particular, each node vi is
influenced by each neighbor vj according to a weight bj,i,
such that the sum of incoming weights to vi is no more
than 1. At the beginning, each node vi picks a threshold θi
uniformly at random from [0, 1]. If at time t, the total weight
from the active neighbors of an inactive node vi is at least θi,

(1.2)
∑

(vj ,vi)∈E
vj is active

bj,i ≥ θi,

then vi becomes active at timestamp t+ 1.
Observe that the two problems, SOC and MAXINF,

share various similarities: both have a threshold-based acti-
vation model, they have the same objective to maximize (the
number of adoptions), and they are both NP-hard [12, 11].

They have also several differences. In particular, in SOC
only a set of user V is considered, overlooking the possible
relations among the users, i.e., the social network. On the
other hand MAXINF considers all the products the same, thus
overlooking an important aspect: different product features
interest different users to different extents, so one should
not forget the characteristics of the product, when modeling
influence propagation.

In this paper we incorporate product design in viral
marketing. This leads to the new problem of influence
maximization with viral product design (MAXINF VPD),
which builds upon the similarities of SOC and MAXINF, and
overcomes their limitations by considering both the social
influence and the features of the product to be promoted by
a viral marketing campaign.

In a recent paper [10], the economists Gunnec and
Raghavan provide the “dual” of our effort: they incorporate
peer influence in SOC. In particular peer influence is injected
into the objective function of SOC as a decrease in one
person’s hurdle. The more social contacts adopt the product,
the smaller becomes the hurdle. By means of an analytical
example, Gunnec and Raghavan show the difference in
market share among SOC with and without peer influence:
in the worst case, the loss of market share for ignoring the
social network effects can be as large as the whole market.

In Figure 1 we report empirical example based on real
data, to show that in viral marketing the features of the
product being promoted cannot be overlooked. In particular
we show the different expected spread achieved by our
algorithm when considering items with different features
set.1 The first plot, from a LastFM dataset, shows the
expected spread (for different sizes of the seed set) of a
viral marketing campaign of two different new songs that
we might want to promote. One song has the features
{Electronic, Metal}, indicating a song combining Heavy
Metal and Electronic music, while the second song has
the features {Lana del Rey, Kate Perry}, indicating an

1In this paper for simplicity’s sake and due to the nature of our datasets, the features
we consider have binary values: either the product has a feature or not.

1 5 10 15 20

0

50

100

150

200

3 11
32

61 73
55

81
102 112

145

E
xp

ec
te

d
sp

re
ad

{Electronic, Metal}
{Lana del Rey, Kate Perry}

1 5 10 15 20

0

1,000

2,000

3,000

14

1,350
1,715 1,856

2,0411,877 2,054 2,131 2,252
2,462

Seed set size

E
xp

ec
te

d
sp

re
ad

{wizards and magicians, very good for kids}
{thriller, aliens}

Figure 1: The different spread of influence achieved by
our algorithm when considering items with different feature
sets. The plot above refers to an experiment on the LastFM
dataset, while the bottom plot is from the Flixster dataset.

hypothetical collaboration among these two pop singers. The
expected size of market share in our experiments clearly
speaks in favor of the second song. Therefore, if we were
about commercializing a new hit, we would better consider
setting up a collaboration between Lana del Rey and Kate
Perry, than a metal-electronic extravaganza.

2 Background and related work
Influence maximization. Given a probabilistic propagation
model m (for instance, LT) and a seed set S ⊆ V , the
expected number of active nodes at the end of the process
is denoted by σm(S). The MAXINF problem requires
to find the set S ⊆ V , |S| = k, such that σm(S) is
maximum. Kempe et al. [11] show that the problem is
NP-hard, however, the function σm(S) is monotone2 and
submodular3. When equipped with such properties, the
simple algorithm that at each iteration greedily extends the
set of seeds with the node w providing the largest marginal
gain σm(S ∪ {w}) − σm(S), produces a solution with
(1− 1/e) approximation guarantee [16].

Following [11], considerable effort has been devoted to
develop methods for improving the efficiency of MAXINF
[13, 5, 8], or for learning the strength of influence along each
link [18, 7] (which is a needed input for MAXINF). Regard-
less the fact that users’ authoritativeness, expertise, trust and
influence are evidently topic-dependent, the research on so-
cial influence has surprisingly largely overlooked this aspect:
only recently, researchers have started looking at social influ-
ence while keeping in consideration the characteristics of the
item that is propagating [2].

2σm(S) ≤ σm(T) whenever S ⊆ T .
3σm(S ∪ {w})− σm(S) ≥ σm(T ∪ {w})− σm(T) whenever S ⊆ T .

Product design can be roughly divided into two main
phases. In the first phase, data about customers preferences
is collected and analyzed to produce part-worth utilities. The
most popular tool for this task is a statistical technique used
in market research known as conjoint analysis [9].

The second phase takes part-worth utilities as input
and aims at selecting the levels of the product features that
maximizes the product adoption: this is the share-of-choice
(SOC) problem which has been shown to be NP-hard [12]
and for which several heuristics have been proposed [1, 21].

Aral and Walker coin the term viral product design [19].
They distinguish between “viral characteristics” and “viral
features” of a product. Viral characteristics refer to the
content of the product, whereas viral features correspond
directly to viral mechanism associated to the product.In this
paper we are interested in the former, while Aral and Walker
conduce randomized field experiments with the latter.

Gunnec and Raghavan [10] incorporate peer influence in
the SOC problem and propose a genetic algorithm for their
new version of the problem. There are many differences with
our contribution. First, they consider all social contacts of a
person having the same influence weight, thus overlooking
any distinction between more or less influential users. Sec-
ond, they assume part-worth utilities as given in input, as it
is always the case for SOC. Instead in this paper we study
the problem of learning the part-worth utilities, the hurdle
for each user and the influence strength for each link jointly,
by analyzing past data. Last, we incorporate product design
in MAXINF, so the overall objective is different.

Miah et al. [14] study the problem of selecting which
attributes of a product the seller should highlight in order
to maximize the visibility of the product in a database
representing an e-marketplace. Das et al. [6] introduce a
new problem for web item design: given a training dataset
of existing items with their user-submitted tags, and a query
set of desirable tags, design the k best new items expected to
attract the maximum number of desirable tags.

3 Paper contributions and roadmap
Our contributions are summarized as follows:
• A feature-aware propagation model (F-TM), which

models the process of product adoption by considering
social influence and part-worth utilities for the features
of the items being propagated (Section 4).
• An improved iterative scaling procedure to learn part-

worth utilities, hurdles, and social influence jointly
(Section 4.1): those are the parameters that maximize
the likelihood for the F-TM model, on a log of observed
product propagations.
• The definition of the influence maximization with viral

product design (MAXINF VPD) problem and the study
of its properties under the F-TM propagation model
(Section 5).

• An iterative alternating optimization algorithm for the
MAXINF VPD problem (Section 6).

• A thorough experimental assessment using two real-
world, semantically rich datasets from the domain of
social music consumption (LastFM) and social movie
consumption (Flixster). The datasets contain (i) the
social network among users, (ii) a database of past item
propagations in the social network, and (iii) a set of
features for each item (Section 7).

4 Feature-aware propagation model
We next introduce our feature-aware propagation model. For
simplicity’s sake, we focus on binary features: either the
product has a feature or not.

Let G = (V,E) with V = {v1, v2, . . . , vn} be the
social graph, where each node vi has an associated hurdle
hi ∈ R+, that represents an internal resistance of the
user to be influenced. For each arc (vj , vi) ∈ E, let
bj,i ∈ R+ represent the strength of the influence exerted
by vj on vi. Let F denote the universe of possible product
features, and let F(p) represent the set of features of a given
product p. The part-worth utility for user vi and feature
f is denoted uif ∈ R: it is natural that each feature may
contribute positively for some users, while its contribute may
be negative for others.

The feature-aware threshold model (F-TM) is a variant
of the LT model, where peer influence and feature utilities
cooperate, while the hurdle is used as a reduction of the
utilities. In accordance with the literature on MAXINF, we
keep the propagation model probabilistic: at the beginning
each node vi picks a threshold θi uniformly at random from
[0, 1]. Time unfolds in discrete steps. For a given product
p, the set of newly activated nodes at time t is denoted by
Dp(t), while Cp(t) = ∪t′≤t Dp(t

′) represents the set of all
nodes that adopted p so far. Product adoption is modeled
using a logistic function. At time t the probability that user
vi adopts product p is:

(4.3) Pr(p|i, t) =
exp{ψit(p)}

1 + exp{ψit(p)}
where:

(4.4) ψit(p) =
∑

(vj ,vi)∈E
vj∈Cp(t)

bj,i +
∑

f∈F(p)

uif − hi.

The activation probability is zero if the node vi has no active
neighbors at the considered time, or if F(p) = ∅. At time t if
Pr(p|i, t) ≥ θi then vi adopts p at time t+ 1. The diffusion
ends when no new nodes can be activated.

With the choice of the logistic as activation function, we
model log-odds as a linear function of the user overall utility
(social influence and subjective preference) in adopting the
product. Moreover, this choice allows us employing maxi-
mum likelihood for estimating the parameters of the model.

B ≥ C +
∑
p∈P

∑
i:vi∈V

δ(i, p)

 ∑
vj∈N

p
in(vi)

βj,i +
∑

f∈F(p)

υif − ηi −
(
1− ψitp(i)(p)

)−∑
p∈P

∑
i:vi∈V

(1− δ(i, p))
(
1− ψitp(i)(p)

)

−
∑
p∈P

∑
i:vi∈V

ψitp(i)(p) ·
1

λip

 ∑
vj∈N

p
in(vi)

exp
{
βj,iλ

i
p

}
+

∑
f∈F(p)

exp
{
υifλ

i
p

}
− exp

{
ηiλ

i
p

}
Figure 2: Lower bound on the likelihood improvement.

4.1 Learning the parameters of the model. We next fo-
cus on the problem of learning social influence strength, part-
worth utilities and hurdles from past observations. The in-
put of the learning problem is composed by: (i) the directed
social graph G = (V,E), (ii) a log of past product prop-
agations D, and (iii) for each product p the list of its fea-
tures F(p). The log D is a relation (User, Product, T ime),
where each tuple 〈i, p, t〉 indicates that the user vi adopted
the product p at the time t. We assume that the projection
of D over the first column is contained in V , the projection
of D over the second column corresponds to the universe of
products P , and the third column is contained in [t0, T]. We
also denote the time at which user vi adopted the product p
by tp(i). If vi does not adopt p, then we set tp(i) = T + 1.

The output of the learning problem is the set of param-
eters of the F-TM model: (i) the influence strength bi,j for
each arc (vi, vj) ∈ E, (ii) the part-worth utility uif for each
user vi ∈ V and each feature f ∈ F , and (iii) the hurdle hi
for each user vi ∈ V . Let Θ denote the overall set of param-
eters of the model. Assuming that each propagation trace is
independent from the others, the likelihood of the data given
the model parameters Θ can be expressed as

L(D; Θ) =
∑
p∈P

logL(Dp; Θ) where:

L(Dp; Θ) =
∏

i : vi∈V
Pr(p|i, tp(i))δ(i,p) (1− Pr(p|i, tp(i)))1−δ(i,p)

and Dp represents the propagation of p, i.e., the selection of
the relation D where the product is p. Moreover δ(i, p) = 1
if vi adopted p and 0 otherwise.

The optimization problem can be defined as follows:

Maximize
Θ

log L(D; Θ)

subject to bi,j ≥ 0, ∀ (vi, vj) ∈ E
and hi ≥ 0 ∀ vi ∈ V

For solving this learning problem we adopt the improved
iterative scaling (IIS) approach[17, 4]. In practice we seek
for an improvement ∆ of the parameters, such that we obtain
a higher (log) likelihood:

L(D; Θ + ∆) ≥ L(D; Θ)

The idea is to express the change in log likelihood B =
L(D; Θ + ∆) − L(D; Θ) and optimize it with respect to ∆.

The ∆ is the set of improvements for all parameters, i.e., a
βi,j for each (vi, vj) ∈ E, a ηi for each vi ∈ V , and a υif
for each vi ∈ V and f ∈ F , such that Θ + ∆ actually means
bi,j := bi,j + βi,j , hi := hi + ηi, and uif := uif + υif .

Let Nin(vi) denote the set of nodes which may po-
tentially influence the node vi, i.e: Nin(vi) = {vj ∈
V |(vj , vi) ∈ E}, while Nout(vi), symmetrically defined, is
the set of nodes which can be influenced by vi. For a given
product p and a timestamp t, let Np

in(vi) = Cp(tp(i)) ∩
Nin(vi) denote the set of nodes which are exerting influ-
ence on vi for product p at time t. Moreover, let λip =
|Np

in(vi)|+ |F(p)|+ 1.
By exploiting the inequality − log x ≥ 1 − x and by

applying Jensen’s inequality, we can derive a lower bound
on the improvement of the likelihood as reported in Figure 2,
where C is the sum of all terms in the derivation which do
not depend on the IIS parameters. Due to lack of space we
omit the complete derivation which will be provided in an
extended version of this paper.

Following the IIS approach we compute the set of
updates of parameters ∆ that maximizes our lower bound on
the improvement of the loglikelihood. This is summarized
in Algorithm 1, where we compute ∂B

∂(·) = 0 for each IIS
parameter by applying Newton Raphson, in order to obtain
an incremental update. Note that bi,j + βi,j or hi + ηi may
result negative. In this case, due to the monotonicity of the
activation function with respect to bi,j and hi, the lowest
legal value that meets our non-negative constraints is zero.

5 Influence maximization with viral product design
We next focus on the MAXINF VPD problem defined over
the F-TM propagation model. The input to the problem is
the social graph and the parameters of F-TM for which we
defined a learning procedure in the previous section.

PROBLEM 1. (MAXINF VPD) Given a directed graph
G = (V,E), and the parameters of the F-TM propagation
model: the influence strength bi,j for each arc (vi, vj) ∈ E,
the part-worth utility uif for each user vi ∈ V and feature
f ∈ F , and the hurdle hi for each user vi ∈ V .

Let σ(S,H) denote the expected spread of a set of nodes
S ⊆ V and a set of features H ⊆ F , according to F-TM.
Given a budget k of nodes, the problem requires to find S,
with |S| ≤ k, and H that maximize σ(S,H).

Algorithm 1: Learning the parameters of F-TM
Input : Social graph G = (V,E), propagation log data D
Output: All parameters of F-TM: social influence bi,j ,

part-worth utilities uif , and hurdle hi.
1 init(Θ); //Random initialization of parameters
2 repeat
3 forall the vi ∈ V do
4 forall the vj ∈ Nout(vi) do
5 Solve ∂B

∂βi,j
= 0 for βi,j

6 Set bi,j ← max(0, bi,j + βi,j)

7 end
8 forall the f ∈ F do
9 Solve ∂B

∂υi
f

= 0 for υif

10 Set uif ← uif + υif
11 end
12 Solve ∂B

∂ηi
= 0 for ηi

13 Set hi ← max(0, hi + ηi)

14 end
15 until log likelihood converge;

THEOREM 5.1. MAXINF VPD is NP-hard for F-TM.

Proof. We show that the problem MAXINF under the gen-
eral threshold model (GTM)[11], is a special instance of our
problem MAXINF VPD under F-TM.

Consider a fixed set of features H . Then according
to Equations (3) and (4) the node’s decision to become
active is a monotone function of the set of its neighbors
that are already active. Moreover, the activation probability
is zero if the set of active neighbors is empty. These
two properties correspond to the definition of GTM [11].
Moreover MAXINF VPD, when the set of features H is
fixed, corresponds to MAXINF, which has been shown to be
NP-hard for GTM [11]. �

THEOREM 5.2. Given the F-TM model, for any fixed
choice of the feature-set H , the spread function σ(S,H) is
monotone and submodular in S.

Proof. We can apply the submodularity conjecture for the
General Threshold model of Kempe et al. [11], which was
later proven by Mossel and Roch in [15]. This conjecture
states that if the likelihood that a node become active in-
creases as more of its neighbors become active and if the
marginal effect of each neighbor satisfies the property of “di-
minishing returns”, then the expected spread for a given set
of initial nodes is submodular. Roughly, this means that “lo-
cal” submodularity is preserved “globally”. Therefore, if the
local activation function is monotone and submodular, so it
will be the expected spread function.

As the feature-set H is fixed, the sum of part-worth
utilities and the hurdle are constant terms which can be
incorporated into the user-specific threshold. For simplicity

sake, let us us introduce as simplified activation function for
each user vi:

f i(S) =
exp{ψi(S)}

1 + exp{ψi(S)}
, where ψi(S) =

∑
vj∈S

bj,i.

We can easily verify that, assuming positive influence
weights, the monotonicity inequality f i(T) ≥ f i(S) holds
for each S ⊆ T ⊆ V . The submodularity condition is for-
malized by the following inequality:

f i(T ∪ {w})− f i(T) ≤ f i(S ∪ {w})− f i(S),

where again S ⊆ T ⊆ V and w ∈ V . By standard algebraic
manipulations, the above condition is equivalent to:

(eψ
i({w}) − 1)(eψ

i(T) − eψi(S))(eψ
i(S∪T∪{w}) − 1)

(eψi(S) + 1)(eψi(T) + 1)(eψi(S∪{w}) + 1)(eψi(T∪{w}) + 1)
≥ 0

which is satisfied for each S ⊆ T ⊆ V and for positive
influence weights. Summarizing we have shown that, by
fixing the feature set H , the activation function adopted in
this paper is locally monotone and submodular in S. This
allow us to apply the submodularity result presented in [15]
and conclude that, fixing the feature set H , the expected
spread σ(S,H) is monotone and submodular in S. �

The result above is not surprising. In practical terms
it means that if we fix the product, then MAXINF VPD
boils down to standard MAXINF, and thus we can apply
the standard algorithms developed for MAXINF to find the
seed set of nodes. In particular, when the product is given,
and thus the set of features H is fixed, the optimal seed
set can be approximated by means of the simple greedy
algorithm, which at each iteration adds to the seed set, the
node that exhibits the highest marginal gain in the expected
spread. To estimate the spread for a given seed set we employ
Monte Carlo simulations. The overall procedure for seed
selection provides an (1 − 1/e − ε) approximation [11].
The computational burden of the Monte Carlo simulations
can be reduced by employing the lazy evaluation procedure
CELF [13] which exploits the submodularity of the objective
function.

Unfortunately, when doing influence maximization with
product design, there is no clear property that we can use.
In fact adding a feature to the current feature set, might well
decrease the viral potentialities of the new product, as many
influential users might have a negative part-worth utility for
such feature. Therefore, when we aim at finding both the
seed set of influential users S and the feature set H such as
to maximize σ(S,H) under the F-TM propagation model,
we have to rely on heuristic methods. In the next section we
propose our algorithm for MAXINF VPD.

6 Algorithm
In the MAXINF VPD problem we have to jointly select a
set of users S ⊆ V and a set of features H ⊆ F , to
maximize the expected viral spread of a viral marketing
campaign started with nodes S, for a new product described
by H . Given the enormous size of the search space of
our problem, i.e., 2|F|

(|V |
k

)
, we need some property, or at

least a good heuristics. A promising direction has recently
been investigated by Singh et al. in [20], where the authors
extends the concept of submodularity to set functions with
two arguments (dubbed bisubmodularity). In particular, they
show that for a restricted class of those functions, where (i)
the two considered sets are not disjoint and (ii) fixing one of
the coordinates of the function yields a submodular function
in the free coordinate, that is, if the following property holds

f(A,B)+f(A′, B′) ≥ f(A∪A′, B∪B′)+f(A∩A′, B∩B′)

then the coordinate-wise maximization, in which each set is
optimized by considering the other fixed, is approximately
optimal. Unfortunately, the same procedure does not pro-
vide, in general, any approximation guarantee if the two sets
are disjoint (although authors prove a weaker result that re-
quires some additional assumptions, i.e, the existence of a
submodular extension of f).

A further obstacle in our case is that, due to the possibil-
ity of obtaining negative part-worth utilities, the spread func-
tion under F-TM is not even monotone. This is a common
challenge in product design and SOC, for which heuristic ap-
proaches, or search techniques based on simulated annealing
or genetic algorithms have been adopted [1, 3, 21].

Although we cannot rely on the bisubmodularity results,
we can nevertheless borrow, as an heuristic, the coordinate-
wise maximization approach. Following this idea we pro-
pose a procedure which alternates local greedy choices for
the update of the seed set and the feature set. The procedure
is presented in Algorithm 2.

Our algorithm starts by detecting the pair of singletons
〈v, f〉 in the cartesian product V × F , which maximizes the
spread (Line 2). Then, iteration by iteration, we alternate
the procedure of greedy seed selection and feature update in
such a way that, at the generic iteration (i), we generate an
improvement of the objective function, by forcing one of the
two following inequalities to hold:

σ(S(i), H(i)) ≤ σ(S(i+1), H(i))(6.5)

σ(S(i), H(i)) ≤ σ(S(i), H(i+1)).(6.6)

When we keep the feature set H fixed, if we increase
the size of the seed set S then inequality in Equation (6.5)
trivially holds thanks to the monotonicity in S. Actually, the
step in which we make the greedy selection of the next node
to add to the seed set (Line 9), has the usual (1−1/e) quality
guarantees, thanks to submodularity.

Algorithm 2: MAXINF VPD
Input : Social graph G = (V,E), budget K ∈ N, and the

set of all parameters of F-TM: social influence
bi,j , part-worth utilities uif , and hurdle hi.

Output: S ⊂ V , |S| = k, and a set of features H ⊆ F .
1 S,H,Hold ← ∅
2 (v′i, f

′)← argmax(vi,f)∈V×F σ({vi}, {f})
3 S ← S ∪ {v′i}, H ← H ∪ {f ′}
4 σcurr ← σ(S,H)
5 iterate← true
6 it← 0
7 while (iterate) do
8 if (it mod 2 = 0 ∧ |S| < k) then
9 [s, σcurr]← greedySelection(S,H)

10 S ← S ∪ {s}
11 else
12 Hold ← H
13 [H,σcurr]← updateFeatureSet(S,H)
14 if (|S| = k ∧Hold = H) then
15 iterate← false
16 end
17 S′ ← argmax S′⊆V

|S′|≤|S|
σ(S′, H)

18 if (σ(S′, H) > σcurr) then
19 S ← S′

20 σcurr ← σ(S′, H)

21 end
22 end
23 it← it+ 1

24 end

For the features-update step we do not have any prop-
erty, but we can adopt several heuristic techniques for gen-
erating “good” solutions, such that Equation (6.6) is always
satisfied. In this paper, we experiment with two alternatives
for the the updateFeatureSet(S,H) procedure (Line 13):

Local Update: in this case the update procedure provides
the best feature set (w.r.t. the objective function) as out-
put, which can be obtained by performing only one addi-
tion/removal of a feature to/from the current feature set. Al-
though the procedure is expected to converge naturally to
a limited number of features, as the algorithm will reach a
point in which no local change can improve the spread, we
put a constraint (≤ 10) of the size of the selected feature set
to make the interpretability of the feature set provided.

Genetic Algorithm Update: the update of the feature set
is performed by employing a genetic algorithm. Our imple-
mentation is built upon the popular JGAP (http://jgap.
sourceforge.net/) framework, by using elitist selec-
tion on a initial population of 30 feature sets and by allowing
20 evolutions. Better results may be, in principle, obtained
by using a larger number of evolutions, but we found this
combination of parameters as a good compromise between

Last.fm Flixster
nodes (|V |) 1,372 29,275
links (|E|) 7,354 212,106

number of product adoptions (|D|) 1,208,640 5,423,310
propagations episodes 322,932 2,768,654

avg number of products per user 880 185
avg number of users per product 23 953

products (|P |) 51,495 5,685
distinct features (|F|) 13,510 5,116

avg number of features per product 5 8
avg number of products per feature 18 9

Table 1: Summary of the datasets.

computational time and effectiveness. In this case the fitness
function can be naturally instantiated by the expected spread.
However, to penalize large feature sets, we impose a penalty
(|H| − t)2 if the number of feature exceeds the “desired”
length t of the feature set (10 in our experiments).

Once updated the feature set, we apply the standard
MAXINF greedy algorithm with F-TM model, with budget
|S(i)| and fixed feature set, to check if a better selection of
seeds exists (Line 17). The procedure ends when we have
reached the seed budget and no further update of the feature
set produces an improvement of the spread (Line 15).

7 Experimental analysis
Datasets. For our purposes we need information-rich
datasets containing (i) the social network among users, (ii)
a database of past propagations of items in the social net-
work, and (iii) a set of features for each item. Gathering
such dataset is a non-trivial task. Indeed, the majority of
MAXINF literature uses synthetically-generated data: usu-
ally the social graph is a real one, but the influence informa-
tion is synthetic. We argue that for the task of studying and
analysing the impact of part-worth utilities and peer influ-
ence on the overall diffusion process it is fundamental to rely
on real-world data, mainly because real-world data exhibits
patterns which may not be found on synthetic data. There-
fore, we collected two real-world datasets: one from the do-
main of social music consumption (lastfm.com) and one
from social movie consumption (flixster.com).

Our LastFM dataset was created starting from the Het-
Rec 2011 Workshop dataset4, and enriching it by crawling.
Here the action log D contains information about the first
time that a user listens to a song. If a user vi listens to a song
and shortly after one of her peers vj does the same, we as-
sume that the song propagated from vi to vj . More formally,
we assume that a generic product p propagates from vi to vj
iff (vi, vj) ∈ E and tp(i) < tp(j). Hence, we say that a tu-
ple 〈i, p, t〉 ∈ D is a propagation episode if exists vj ∈ Cp(t)
such that vi ∈ Nout(vj).

4http://www.grouplens.org/node/462

LastFm

Iteration

Lo
g−

Li
ke

lih
oo

d

0 20 40 60 80 100−
1e

+
07

−
8e

+
06

−
6e

+
06

−
4e

+
06

Flixster

Iteration

Lo
g−

Li
ke

lih
oo

d

0 20 40 60 80 100

−
4e

+
07

−
2.

5e
+

07
−

1e
+

07

Figure 3: Model fitting (Algorithm 1): convergence rate.

Also our Flixster dataset was obtained by conjoining
crawled information5 with movies’ tags coming from the
HetRec 2011 Workshop dataset5. Here a movie propagates
from a user to one of her peers, when both post a rating
for it. In both datasets the social graph is bidirectional and
the features are the tags associated to each product (song in
LastFM and movie in Flixster).

Analysis of social influence and part-worth utility. Here
we report the analysis of the parameters (peer influence, part-
worth utility, and hurdle) learnt from real data, using Algo-
rithm 1. To fit the F-TM model we run Algorithm 1 proce-
dure for 100 iterations on both datasets: the convergence rate
is reported in Figure 3.

Figure 4 shows that influence weights are distributed ac-
cording to an exponential distribution, with a high density of
zero-valued influence relationships, while part worth utilities
are distributed according to a normal distribution, centered
in the interval (0, 20) and (0, 50) on LastFm and Flixster,
respectively. Moreover, we can observe that the Flixster
dataset exhibits a higher level of influence, while in LastFm
part-worth utilities play a more important role. Hurdles are
distributed similarly in the two datasets.

Viral vs popular features. With the goal of showing that
different features trigger viral cascades differently, we next
compare the spread achievable under our propagation model
by “viral” and “popular” features.

We define the level of “virality” of each feature by
two different measures. Let prop(p, i, j) be a predicate
that is true if in the data we observe a propagation of
product p from vi to vj , false otherwise. We define the
Propagation Coefficient(PC) of the feature f as the ratio
between the number of propagations and the total number of
product adoptions which involve the considered feature:

PC (f) =
|{〈i, p, t〉 ∈ D|f ∈ F(p) ∧ ∃ vj ∈ V : prop(p, j, i)}|

|{〈i, p, t〉 ∈ D|f ∈ F(p)}|

As second measure we consider the likelihood that an
adoption of a product which exhibits the feature f will
trigger adoptions. The Propagation Likelihood(PL) of the

5http://www.cs.sfu.ca/˜sja25/personal/datasets/

(
0,

5
)

(
5,

10
)

(
10

,1
5

)

(
15

,2
0

)

(
20

,2
5

)

(
25

,3
0

)

(
30

,3
5

)

(
35

,4
0

)

(
40

,4
5

)

(
45

,5
0

)

(
50

,5
5

)

Influence Weights − LastFm

D
en

si
ty

1e
−

04
0.

00
1

0.
01

0.
1

(
0,

10
)

(
10

,2
0

)

(
20

,3
0

)

(
30

,4
0

)

(
40

,5
0

)

(
50

,6
0

)

(
60

,7
0

)

(
70

,8
0

)

(
80

,9
0

)

(
90

,1
00

)

(
10

0,
11

0
)

(
11

0,
12

0
)

(
12

0,
13

0
)

Influence Weights − Flixster

1e
−

05
0.

00
1

0.
1

(
−

12
0,

−
10

0
)

(
−

10
0,

−
80

)
(

−
80

,−
60

)
(

−
60

,−
40

)
(

−
40

,−
20

)
(

−
20

,0
)

(
0,

20
)

(
20

,4
0

)
(

40
,6

0
)

(
60

,8
0

)
(

80
,1

00
)

(
10

0,
12

0
)

(
12

0,
14

0
)

(
14

0,
16

0
)

Part Worth Utilities − LastFm

1e
−

05
0.

00
1

0.
1

(
−

20
0,

−
15

0
)

(
−

15
0,

−
10

0
)

(
−

10
0,

−
50

)

(
−

50
,0

)

(
0,

50
)

(
50

,1
00

)

(
10

0,
15

0
)

(
15

0,
20

0
)

(
20

0,
25

0
)

(
25

0,
30

0
)

Part Worth Utilities − Flixster

1e
−

06
1e

−
04

0.
01

(
10

,2
0

)

(
20

,3
0

)

(
30

,4
0

)

(
40

,5
0

)

(
50

,6
0

)

(
60

,7
0

)

(
70

,8
0

)

(
80

,9
0

)

(
90

,1
00

)

(
10

0,
11

0
)

Hurdles − LastFm

0.
00

1
0.

01
0.

1

(
0,

20
)

(
20

,4
0

)

(
40

,6
0

)

(
60

,8
0

)

(
80

,1
00

)

(
10

0,
12

0
)

(
12

0,
14

0
)

(
14

0,
16

0
)

(
16

0,
18

0
)

(
18

0,
20

0
)

Hurdles − Flixster

1e
−

04
0.

00
1

0.
01

0.
1

Figure 4: Distribution of influence weights, part-worth utili-
ties, and hurdles on the two datasets.

feature f can be defined as:

PL(f) =

∑
〈i,p,t〉∈D
f∈F(p)

|{vj∈V |prop(p,i,j)}|
|Nout(vi)|

|{〈i, p, t〉 ∈ D|f ∈ F(p)}|

Both scores have values ∈ [0, 1] and the higher the value, the
higher the ability of the feature to trigger viral cascades.

To compare the expected spread achieved by product
which exhibit different kind of features, we compare on both
datasets the spread achieved by selecting the top-5 and the
top-10 features selected according to three different criteria:
(i) popularity (i.e, frequency, the number of products in
which the feature is present), (ii) propagation coefficient and
(iii) propagation likelihood. Before reporting the MAXINF
results, it is worth mentioning that propagation coefficient
and propagation likelihood are positively correlated on both
datasets (ρ equals to 0.68 on LastFm and 0.91 on Flixster),
while the correlation between the two virality indices and
popularity of the feature is significantly lower (≈ 0.03 on
LastFm, and ≈ 0.14 on Flixster). Therefore, being popular
does not make a feature viral.

The MAXINF results, given in Figure 5, highlight signif-
icant differences in terms of the expected spread achieved by

●●●●●●●●●●●●
●●●●●●●

●●●
●

●●●●●●●●●
●●

●

●●●●●●●●●
●●●●●●

Top−5 features − LastFm

Seed set size

E
xp

ec
te

d
sp

re
ad

1 6 12 18 24 30 36 42 48

50
10

0
15

0

● Frequency
Prop Coefficient
Prop Likelihood

●

●

●

●
●●

●●

●●
●●

Top−10 features − LastFm

Seed set size

E
xp

ec
te

d
sp

re
ad

1 6 12 18 24 30 36 42 48

50
10

0
20

0
30

0

● Frequency
Prop Coefficient
Prop Likelihood

●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●
●

●

●
●

●
●

●●
●●

●●●●
●●●●●●●

Top−5 features − Flixster

Seed set size
E

xp
ec

te
d

sp
re

ad

1 6 12 18 24 30 36 42 48

50
0

10
00

20
00

● Frequency
Prop Coefficient/Likelihood

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●
●

●

●
●

●●
●●

●
●

●
●

●●
●

Top−10 features − Flixster

Seed set size

E
xp

ec
te

d
sp

re
ad

1 6 12 18 24 30 36 42 48

50
0

10
00

20
00

● Frequency
Prop Coefficient
Prop Likelihood

Figure 5: MAXINF with “viral” and “popular” features.

considering popular features versus “viral” ones. The high-
est spread in these cases can be achieved by selecting the
features according to their propagation likelihood value. On
the Flixster dataset, where we have already highlighted an
albeit linear correlation between the values of propagation
coefficient and likelihood, the top-5 feature selected accord-
ing to the two different virality measures corresponds.
Influence maximization with viral product design. We
next evaluate the performance of our framework for MAX-
INF VPD. To initialize the algorithm, we select the 30 fea-
tures with highest part-worth utility for each user vi, and
we pick the pair 〈vi, f〉 which achieves the largest expected
spread. Moreover, to reduce the feature search space, we
consider only the top-2, 000 features according to their prop-
agation likelihood (PL), since this value, as shown in Fig-
ure 5, seems to be a good heuristic.

We report in Figure 6 the results of the maximization
algorithm with a budget of 20 seed nodes on LastFm and 10
on Flixster. The version of the algorithm which employs a
genetic algorithm optimization exhibits better performances
in terms of spread (330 vs 305 on LastFm and 3, 104 vs
2, 811 on Flixster), at the cost of a higher computational
overhead (around 3 times slower than the simpler version on
LastFm and 5 times on Flixster).

The incremental selection of seed nodes is generally
robust: on both datasets, the greedy algorithm is rarely
able to provide a better combination of seeds after updating
the feature set (considering the version based on genetic
optimization, about 3 times on LastFm and 2 on Flixster).

While the local update version provides 10 features
as output on both the datasets (which corresponds to the
maximum budget), the solution provided by the genetic

●

●●

●
●

●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

LastFm

Iteration

E
xp

ec
te

d
sp

re
ad

0 4 8 13 19 25 31 37

0
50

10
0

20
0

30
0

● Local Update
Genetic Algorithm

●

●

●
●

●
● ●

● ●
●

●
● ● ● ● ● ● ● ● ●

Flixster

Iteration
E

xp
ec

te
d

sp
re

ad

0 2 4 6 8 11 14 17 20

50
0

15
00

25
00

● Local Update
Genetic Algorithm

Figure 6: Influence maximization with viral product design.

version includes 18 features on LastFm, and 23 on Flixster.
A very interesting observation is that some features belong
to both feature sets provided by the different versions of the
algorithm (6/18 on LastFm and 4/23 on Flixster, starting
from a set of 2,000 features).

Finally, the most important question of our experimen-
tal analysis is whether incorporating product design in viral
marketing produces any benefit, w.r.t. keeping the two tasks
separated. By comparing Figure 6 with Figure 5 we can ob-
serve clearly that the spread achieved by integrating the prod-
uct design process into the influence maximization frame is
significantly greater than the one achieved by the heuristic
selection of features presented. On LastFm, employing 20
seed nodes and 10 features, the MAXINF VPD procedure
achieves a spread of 305, while the best result reported for
a heuristic selection of the same number of features is 170.
Similar gains are visible in Flixster.

8 Conclusions
The wide diffusion of social media and e-commerce plat-
forms provides a great source of information for understand-
ing customers’ needs, interests and opinions, which can be
exploited to design better marketing strategies and better
products. In this paper we explore a novel direction in the
field of computational marketing, by proposing a framework
which allows the integration of the product design process
into viral marketing.

We incorporate part-worth utilities into a social-
influence-driven propagation model and define a procedure
to fit the model to real data, so that we can learn peer influ-
ence strength and part-worth utilities jointly. Based on these
parameters learnt from real data, we introduce the problem
of influence maximization with product design and devise a
heuristic optimization algorithm, which is empirically shown
to provide good solutions on two real-world datasets. In par-
ticular, the expected market share gained by our procedure is
larger than that achieved by standard influence maximization
without product design, where the product is simply created
putting together the most “viral” features.

Acknowledgments. This work was supported by MULTI-
SENSOR project, funded by the European Commission, un-
der the contract number FP7-610411.

References

[1] P. V. S. Balakrishnan and V. S. Jacob. Genetic algorithms for
product design. Manage. Sci., 42(8):1105–1117, 1996.

[2] N. Barbieri, F. Bonchi, and G. Manco. Topic-aware social
influence propagation models. In ICDM, 2012.

[3] A. Belloni, R. Freund, M. Selove, and D. Simester. Optimiz-
ing product line designs: Efficient methods and comparisons.
Manage. Sci., 54(9):1544–1552, 2008.

[4] A. Berger. The improved iterative scaling algorithm: A gentle
introduction. 1997.

[5] W. Chen, C. Wang, and Y. Wang. Scalable influence max-
imization for prevalent viral marketing in large-scale social
networks. In KDD, 2010.

[6] M. Das, G. Das, and V. Hristidis. Leveraging collaborative
tagging for web item design. In KDD, 2011.

[7] A. Goyal, F. Bonchi, and L. V. S. Lakshmanan. Learning
influence probabilities in social networks. In WSDM, 2010.

[8] A. Goyal, F. Bonchi, and L. V. S. Lakshmanan. A data-based
approach to social influence maximization. PVLDB, 5(1):73–
84, 2011.

[9] P. Green and V. Rao. Conjoint measurament for quantifying
judgmental data. Journ. of Marketing Research, 8(3):355–
363, 1971.

[10] D. Gunnec and S. Raghavan. Integrating social net-
work effects in the share-of-choice problem. Un-
published working paper. http://terpconnect.umd.
edu/˜raghavan/preprints/snesoc.pdf.

[11] D. Kempe, J. M. Kleinberg, and É. Tardos. Maximizing the
spread of influence through a social network. In KDD, 2003.

[12] R. Kohli and R. Krishnamurti. Optimal product design using
conjoint analysis: Computational complexity and algorithms.
Europ. Journ. of Operational Research, 40(2):186–195, 1989.

[13] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. Van-
Briesen, and N. S. Glance. Cost-effective outbreak detection
in networks. In KDD, 2007.

[14] M. Miah, G. Das, V. Hristidis, and H. Mannila. Determining
attributes to maximize visibility of objects. IEEE Trans. on
Knowl. and Data Eng., 21(7):959–973, 2009.

[15] E. Mossel and S. Roch. Submodularity of influence in
social networks: From local to global. SIAM J. Comput.,
39(6):2176–2188, 2010.

[16] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis
of approximations for maximizing submodular set functions -
i. Mathematical Programming, 14(1):265–294, 1978.

[17] K. Nigam. Using maximum entropy for text classification. In
IJCAI, 1999.

[18] K. Saito, R. Nakano, and M. Kimura. Prediction of informa-
tion diffusion probabilities for independent cascade model. In
KES, 2008.

[19] A. Sinan and W. Dylan. Creating social contagion through
viral product design: A randomized trial of peer influence in
networks. Manage. Sci.. Forthcoming.

[20] A. Singh, A. Guillory, and J. Bilmes. On bisubmodular
maximization. Journal of Machine Learning Research, 2012.

[21] S. Tsafarakis and N. Matsatsinis. Designing optimal prod-
ucts: Algorithms and systems. In Marketing Intelligent Sys-
tems Using Soft Computing, 2010.

