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ABSTRACT
Influence maximization is the key algorithmic problem be-
hind viral marketing: it requires to identify a set of influ-
ential users in a social network, who, when convinced to
adopt a product, shall influence other users in the network,
leading to a large number of adoptions. Although real world
users evidently have di↵erent degrees of interest and author-
itativeness on di↵erent topics, the bulk of the literature on
influence maximization is topic-blind, in the sense that it
treats all items as they were the same.

In this paper we study Topic-aware Influence Maximiza-

tion (TIM) queries: given a directed social graph, where the
arcs are associated with a topic-dependent user-to-user so-
cial influence strength, and given a budget k, the problem
requires to find a set of k users (named seed set) that we shall
target in a viral marketing campaign for a given new item
(described as a distribution over topics) in order to max-
imize its adoption. Our goal is to answer such queries in
milliseconds, thus enabling online social influence analytics,
what-if simulation, and marketing decision making.

The main challenge here is the enormous number of poten-
tial queries: any possible distribution over the topic space
(i.e., any possible item) induces a di↵erent probabilistic
graph, and thus a di↵erent instance of the standard influence
maximization problem, for which e�ciency and scalability
are still unsolved problems.

Given these computational challenges, we propose to build
an index over pre-computed solutions for a limited number
of possible queries. Our proposal, INFLEX, employs a tree-
based index for similarity search with Bregman divergences,
to e�ciently retrieve a good-enough set of neighbor points
for the query item. Then it performs rank aggregation on
their seed sets to produce the final answer to the query.
Experimental results on real data show that INFLEX can
provide in few milliseconds a solution very similar (Kendall-
⌧ distance < 0.1) to the one produced by the best known
o✏ine computation (which usually takes several days).
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24-28, 2014, Athens, Greece: ISBN 978-3-89318065-3, on OpenProceed-
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ative Commons license CC-by-nc-nd 4.0

1. INTRODUCTION
Viral marketing, a popular concept in business literature,

has recently attracted a lot of attention also in computer
science, thanks to the fascinating computational challenges
that it entails. The idea of viral marketing is extremely
appealing: by “targeting” the most influential users in a so-
cial network, we can exploit (fueled by word-of-mouth) the
power of the network e↵ect, thus delivering our marketing
message to a large portion of the network through a self-
replicating viral process, analogous to the spread of a virus.

In this area, the most studied computational problem,
known as influence maximization, requires the identification
of a set of k influential users (usually called the “seed set”),
that should be targeted by the viral marketing campaign.
Here, targeting might mean to give a free sample of a prod-
uct, a special promotion, or a big discount. In order to
enjoy the special promotion, the targeted user has to accept
to automatically re-post it on her timeline over the social
networking platform, so that her followers are exposed to
the same marketing message.

The bulk of the literature on this problem just focuses
on a generic item, thus implicitly assuming that the influ-
ence among users of the social network remains the same,
independently of the characteristics of the item being propa-
gated. Of course this is a very restrictive assumption: users’
authoritativeness, expertise, trust, and influence are evi-
dently topic-dependent. In this paper we drop such assump-
tion and study how to provide a good seed set for a specific
item in an online fashion. In order to formally define the
problem studied, we first need to provide some background.

1.1 Background and related work
Kempe et al. [16] formalized the influence maximization

problem based on the concept of propagation model: i.e., a
stochastic model that governs how users influence each other
and thus how propagations happen. Given a propagation
model and a set of nodes S ✓ V , the expected number of
nodes “infected” in the viral cascade started with S, is called
(expected) spread of S and denoted by �(S). The influence
maximization problem asks for a set S ✓ V , |S| = k, such
that �(S) is maximum, where k is an input parameter.

The most studied propagation model is the so called Inde-

pendent Cascade (IC) model. We are given a directed social
graph G = (V,A) with arcs (u, v) 2 A labeled by influence
probabilities p

u,v

2 (0, 1], representing the strength of the
influence of u over v. If (u, v) 62 A, we define p

u,v

= 0.
At a given time step, each node is either active (an adopter
of product) or inactive. At time 0, a set S of seeds are



activated. Time unfolds deterministically in discrete steps.
When a node u first becomes active, say at time t, it has one
chance at influencing each inactive neighbor v with probabil-
ity p

u,v

, independently of the history thus far. If the attempt
succeeds, v becomes active at time t+ 1.

Influence maximization is generally NP-hardḢowever
Kempe et al. [16] show that the function �(S) is monotone

1

and submodular.2 When equipped with such properties, the
simple greedy algorithm that at each iteration extends the
set of seeds with the node providing the largest marginal
gain, produces a solution with provable approximation guar-
antee (1� 1/e) [21].
Though simple, the greedy algorithm is computationally

prohibitive, since the step of selecting the node providing the
largest marginal gain is #P-hard. In their paper, Kempe et

al. run Monte Carlo simulations for su�ciently many times
to obtain an accurate estimate of the expected spread. How-
ever, running many propagation simulations is extremely
costly on very large real-world social networks. Therefore,
following [16], considerable e↵ort has been devoted to de-
velop methods for improving the e�ciency and scalability of
influence maximization [17, 6, 13, 14]. Regardless of such re-
search e↵orts, scalability still remains an open challenge: on
the problem instances that we consider in this paper, even a
state-of-the-art algorithm as CELF++ [14], takes from few
days to more than a week in order to extract a seed set of
50 nodes. Most of this literature on e�cient algorithms for
influence maximization assumes the weighted social graph
given, and do not address how the link influence probabili-
ties p

u,v

can be obtained. This problem instead is addressed
in [24, 26, 12].
Regardless of the fact that users authoritativeness, exper-

tise, trust, and influence are evidently topic-dependent, only
few papers have looked at social influence from the topics
perspective. Tang et al. [26] study the problem of learn-
ing user-to-user topic-wise influence strength. The input to
their problem is the social network and a prior topic distri-
bution for each node, which is given as input and inferred
separately. Liu et al. [19] propose a probabilistic model for
the joint inference of the topic distribution and topic-wise
influence strength: here the input is an heterogenous so-
cial network with nodes that are users and documents. The
goal is to learn users’ interest (topic distribution) and user-
to-user influence. Lin et al. [18] study the joint modeling
of influence and topics, by adopting textual models. None
of these three papers define an influence propagation model,
until a recent work by Barbieri et al. [2] extended the classic
IC model to be topic-aware: the resulting model is named
Topic-aware Independent Cascade (TIC) .
Barbieri et al. also devise methods to learn, from a log of

past propagations, the model parameters, i.e., topic-aware
influence strength for each link and topic-distribution for
each item. Their experiments show that (1) topic-aware in-
fluence propagation models are more accurate in describing
real-world influence driven propagations than the state-of-
the-art topic-blind models, and (2) by considering the char-
acteristics of the item, a larger number of adoptions can be
obtained in the influence maximization problem. The TIC
model is assumed at the basis of our work and it is intro-
duced in detail next.

1�(S)  �(T ) whenever S ✓ T .
2�(S [ {w})� �(S) � �(T [ {w})� �(T ) whenever S ✓ T .

Figure 1: Topic-aware influence parameters are
learnt from the log of past propagations and the so-
cial network following [2]. These are the prerequi-
sites to build the INFLEX framework that we use
to e�ciently answer TIM queries.

1.2 Problem definition
Consider an advertisement platform allowing to imple-

ment “viral ads” over social networks, where users, by click-
ing on engaging ads, make them propagate to their friends.
Advertisers come to the platform with a description of the
ad (e.g., a set of keywords) to be promoted and they compete
for the attention of the users which are considered influential
w.r.t. the given description. In this kind of setting, not only
it is important to consider the given description of the item
for selecting the seed set appropriately, but such a decision
must also be taken in an online fashion.

In this paper we study the online evaluation of Topic-

aware Influence Maximization (TIM) queries. We are given
a directed social graph G = (V,A) and a space of Z topics.
We assume the TIC propagation model introduced in [2],
whose parameters are learned from a log of past propagation
traces. In particular for each arc (u, v) 2 A and for each
topic z 2 [1, Z] we have a probability pz

u,v

representing the
strength of influence that user u exerts over user v for topic z.
A high level depiction of our setting is provided in Figure 1.
An item i is described by a distribution ~�

i

over the topics:
that is, for each topic z 2 [1, Z], we are given �z

i

, withP
Z

z=1 �
z

i

= 1. In the TIC model a propagation happens like
in the IC model: when a node u first becomes active on item
i, has one chance of influencing each inactive neighbor v,
independently of the history thus far. The tentative succeeds
with a probability that is the weighted average of the link
probability w.r.t. the topic distribution of the item i:

pi
u,v

=
ZX

z=1

�z

i

pz
u,v

. (1)

A TIM query Q(~�
q

, k), takes as input an item description
~�
q

and an integer k and it requires to find the seed set S ✓ V ,
|S| = k, such that the expected number of nodes adopting
item q, denoted by �(S,~�

q

), is maximum:

Q(~�
q

, k) = argmax
S✓V,|S|=k

�(S,~�
q

). (2)

It is important to observe that a TIM query can always
be processed by a standard influence maximization com-
putation in the IC model. In fact, given the query item



description, we can derive a directed probabilistic graph
G = (V,A, p) where the probability p

u,v

for each arc is
defined as in Equation 1. This means that TIM queries
maintain the same properties of standard influence maxi-
mization, thus they can exploit the standard algorithms and
enjoy the usual approximation guarantees. However, as dis-
cussed previously, even the state-of-the-art algorithms for
influence maximization takes from several days to weeks, on
moderately sized graphs. This is clearly not suitable for
real-world applications such as interactive decision support
systems requiring a short response time. Therefore the goal
of this paper is to build indexes to e�ciently process TIM
queries using precomputed information.

1.3 Challenges, contributions, and roadmap
The main challenge of using precomputed information in

this setting is the enormous number of potential queries: es-
sentially any possible item description ~�

i

which lies on the
probability simplex containing all possible probability dis-
tributions with state space [Z]. It is also very hard to build
smart indexes exploiting the graph structure, as any poten-
tial query corresponds to a di↵erent probabilistic graph.

We propose an indexing scheme, named INFLEX, (from
INFluence indEX), which is motivated from the fact that
similar items are likely to interest similar people, and thus
are likely to have similar influence patterns. The idea is to
appropriately select a set of items, and to extract their seed
sets using a standard influence maximization process. Then
at query time, given a query item we select a “large enough”
set of neighbor index points and combine their pre-computed
seed sets, by means of rank aggregation into a final seed set
that we return as the result to TIM query.

Next, for each step, we briefly describe the associated chal-
lenge and the intuition behind the proposed solution.

Selecting the items to build the index. The number
of items used to build the index governs the trade-o↵ be-
tween accuracy and space-time e�ciency. In fact, for each
index point we have to run a standard influence maximiza-
tion, which can be extremely time consuming, and store its
seed. Another challenge is given by the space from which
we have to select the index points: on one hand we want
to follow the distribution observed in the catalog of items
that we have available, because also new items are expected
to come from the same distribution; on the other hand se-
lecting index points directly from the catalog can be risky
in the case of sparsely distributed catalog items - we might
end up finding nearest neighbors which are not very simi-
lar to the query item. Our approach here is to select, for a
given preprocessing budget, a reasonable number of points
that can provide a good coverage of the space. This is ob-
tained as follows. We use the catalog of available items to
define, by means of a maximum likely Dirichlet distribution,
the space from which we sample a large enough number of
points. Then we apply K-means++ [1] to these points, and
select the resulting centroids as our index points (details are
provided in Section 3.1).

Fast, approximate, and unbounded nearest neigh-
bors. At query time, given a TIM query we want to e�-
ciently retrieve the index points which are topic-wise simi-
lar to the query item. Given that index points and query
items are probability distributions over the space of topics,
we adopt the Kullback-Leibler divergence as a measure of

their distance. Our task is then a similarity search with
Kullback-Leibler divergence.

Our task di↵ers from other types of similarity search in the
literature as it is not based on a pre-specified radius (“range
search”) nor on a number of neighbors to return (“K-NN

search”). Instead, how many points to retrieve, depends on
how close the points we retrieve are to the query item. The
intuition is that if we find index points extremely similar
to the query item, then we can just use few of them (at
an extreme, if we find exactly the query item in the index,
then we can simply retrieve the associated seed set without
looking for any other point). Instead, when there are no
index points very close to the query point, we aggregate a
larger number of them.

Another requirement for our similarity search is to be fast,
for which we drop exactness: our solutions are approximate

nearest neighbors in the sense that if we return k index
points, these are not necessarily the k nearest neighbors of
the query item. For this task we adopt the Bregman ball

tree (Section 3.2) with a novel approximate nearest neigh-
bors search procedure (Section 4.1).

Seed set aggregation. In the final step we perform rank
aggregation of the seed sets3 of the retrieved index points.
The goal is to provide a final list of nodes that has the min-
imum Kendall-⌧ distance to all the seed set lists. As this
problem is NP-hard and we aim for quick computation, we
look at approximate solutions. In particular we adopt and
compare Borda [3] and Copeland aggregation [7], both fol-
lowed by the Local Kemenization procedure, that have been
shown to be, both, fast and good in practice [25]. We en-
rich these two methods with a novel importance weighting
scheme based on the KL-divergence of the index points from
the query item: intuitively, the closer a point is to the query
item, the more predominant its role will be in the aggrega-
tion (details are provided in Section 4.2).

Evaluation. The evaluation of our framework is straight-
forward. For a given query item, we assess the performance
of the INFLEX framework in terms of accuracy and query
evaluation time. For both we can compare against perform-
ing an influence maximization computation, for the given
query, from scratch, as well as other smarter baselines. Our
experiments on a real dataset (Section 5) show that INFLEX
produces seed sets that are very close to the “best o✏ine”
ones (Kendall-⌧ distance generally < 0.1), while achieving
an expected spread very close (NRMSE < 3%) to the spread
achieved by standard o✏ine influence maximization compu-
tation, but it does so in few milliseconds instead of several
hours or days of computation, thus opening the door to on-
line influence maximization analytics.

2. OVERVIEW OF THE FRAMEWORK
In Figure 1 we already provided a very high-level view of

the framework. In this section we start giving more details,
opening the INFLEX box and describing its components as
depicted in Figure 2. The starting point is a social graph
G = (V,A) where each arc (u, v) 2 A has associated a proba-
bility pz

u,v

for each topic z 2 [1, Z] representing the strength
of influence that user u exerts over user v for topic z. More-
over we have a database I of items, where each item i is
represented by a distribution ~�

i

over the topics. Both these

3It is important to note that, although usually called seed
“sets”, these are ranked lists of nodes.



Figure 2: INFLEX framework overview.

two pieces of input (depicted in the upper-left corner of Fig-
ure 2) are jointly learnt in a pre-processing phase from a
log of past propagation traces [2] (depicted in the top half
of Figure 1). The database of items I is used to define, by
means of maximum likely Dirichlet distribution, the space
from which we select h index points (details are given in
Section 3.1).

Let H = {~�1, · · · ,~�h} be our index points. For each
~�
i

2 H, and for a fixed ` 2 N we extract a seed set of
size `, or equivalently, we solve the TIM query Q(~�

i

, `), by
transforming it to a standard influence maximization com-
putation over the IC model (as discussed in Section 1.2) and
running the standard greedy algorithm (in particular, we use
its optimization CELF++[14]). This phase is depicted in the
top-right corner of Figure 2.

Now let ⌧1, · · · , ⌧h denote the index lists containing pre-
computed seed sets returned for the h index points. For a
given query Q(~�

q

, k) our goal is to (i) retrieve the points
whose topic distributions are similar to the topic distribu-
tion of the query item q, (ii) combine their pre-computed
seed sets, by means of rank aggregation into a final seed set
⌧
q

⇤ and return as the result to TIM query. As already dis-
cussed in the previous section, the search of index points
similar to the query items is developed on top of a Bregman

ball tree index structure (depicted in the center of Figure 2
and described in full detail in Section 3.2).

Note that the size of the seed set k requirement, can be
satisfied this way even when k > `. In fact, the rank aggre-
gation can return up to m seeds, where m is the cardinality
of the union of the seed lists of all index points retrieved in
the similarity search phase. By retrieving more index points,
we can satisfy larger k requirements.

In the next section we present the o↵-line phase of the
index construction. Then in Section 4 we will present the
TIM query evaluation mechanism over INFLEX.

3. INFLEX CONSTRUCTION
In the TIC propagation model, each item i 2 I is rep-

resented by a distribution over topics, ~�
i

, that lies on the
probability simplex 4Z�1. Each topic z encodes an ab-
stract influence pattern. The assumption is that pairwise

influence probabilities between users depend on the topic.
More specifically, pz

u,v

2 [0, 1] denotes the likelihood that
user u will trigger the activation of user v, on topic z. Given
an item i, the item-specific influence probability on each
arc (u, v) 2 A is the dot product of the user-to-user topic
dependent influence probabilities and the item’s topic dis-
tribution (Equation 1). Under these assumptions, two items
that exhibit a similar distribution over topics will also ex-
hibit a similar propagation pattern, as they will enable close
pairwise influence probabilities.

This observation is the core of the overall approach, as
it allows us to cast the e�cient processing of a TIM query
as a similarity search problem. Intuitively, given a query
Q(~�

q

, k), we can retrieve the closest items for which the list
of users to target is available, and exploit this information
to provide a list of k seed nodes that can boost the adoption
of q on the considered network.

The first step towards the design of the index is the for-
malization of the notion of similarity between two items.
In this context, it is natural to instantiate the dissimilarity
measure between two items as the KL-divergence between
their respective topic distributions. Given two discrete dis-
tributions P and Q, the KL-divergence

D
KL

(PkQ) =
X

i

P (i) log
P (i)
Q(i)

quantifies the average information lost when we use Q to
approximate P . Since KL is asymmetric, one must choose
between the right-sided (the query item is the second ar-
gument) and the left-sided formulation, or opt for a sym-
metrized version that can be computed by considering the
average of the sided definitions. Since our task is to retrieve
the nearest-neighbors for a given query item ~�

q

, the defini-
tion of dissimilarity should penalize the di↵erence between
the topic distribution of each item i and the query item,
proportionally to each component �z

i

. The dissimilarity that
best suits to this setting is the right-sided KL:

D
KL

(~�
i

k~�
q

),

which prefers to stretch over all components �z

i

, rather then
focusing only on the highest mode of ~�

q

[22].



3.1 Selection of the index points
The topic distributions of items recorded in I, form a

data-space on 4Z�1. This is the overall search space for
similarity queries on topic distributions.

The first step to build INFLEX is to select a set of h index
pointsH = {~�1, · · · ,~�h} where each ~� 2 H lies on4Z�1. On
one hand, we want the h points to provide a good coverage of
4Z�1. On the other hand, the actual choice of the budget
h depends on, both, limitations in terms of memory4 and
index construction time, due to the need of running a full
influence maximization computation for each index point.

One way of selecting the index points would be to use
a space-based approach, by selecting h items whose topic
distributions are positioned equi-distantly on 4Z�1. This
would provide a fair coverage of the space. The drawback is
that it disregards the available workload: in fact, the topic
distribution of the items learnt from past data, might be
clustered in some area of the simplex.

At the opposite extreme, we have the fully data-driven

approach: assuming that future items will follow the same
distribution of the items learnt from past data, we might
select as index points, items from the catalog I. However,
this way we might end up finding nearest neighbors which
are actually not very close to the query item if there are some
items in the catalog whose topic distributions are sparse.

To realize a good compromise between these two indexing
approaches, we resort to a sampling strategy on the sim-
plex. By applying the Maximum-Likelihood Dirichlet Esti-

mation procedure described in [20], given the topic distri-
butions learnt from data ⇥I = {~�1, · · · ,~�|I|}, we estimate
the hyper-parameters ↵ = {↵1, · · · ,↵Z

} which define the
Dirichlet distribution that maximizes:

Y

i2I

P (~�
i

|↵) =
Y

i2I

�(
P

z

↵
z

)Q
z

�(↵
z

)

Y

z

(�z

i

)↵z

�1.

Then, the next step is to generate a large number of sam-
ples from Dirichlet(↵), identify h clusters by applying K-
means++ [1], and finally use their centroids as the topic
distributions of the index points.

After the selection of index items, we start building the
list-based index that will store the seed sets returned to the
preprocessing of TIM queries for the selected index items.
For each item i 2 H, let G

i

denote an instance of G =
(V,A, p) that is obtained by assigning item-specific influence
probabilities, according to Eq. 1, to each arc (u, v) 2 A. We
then compute the seed set ⌧

i

for each index item i 2 [1 : h]
using a standard influence maximization computation.

3.2 Bregman-ball tree index
As already anticipated in the previous sections, the prob-

lem of TIM query processing can be addressed by retrieving
index points which are similar to the query item. To make
the similarity search phase e�cient, we turn our attention
to index structures to organize the points in H.

The choice of indexing strategy for similarity search is
naturally tied to the choice of similarity/dissimilarity func-
tion. As discussed above, INFLEX employs an information
theoretic measure, the KL-divergence, which belongs to the
family of Bregman divergences. This family comprises dis-
tortion measures (Squared Euclidean distance, Mahalanobis

4The cost of keeping one preprocessed index item in memory
is (Z � 1) ⇥ sizeof(double) + ` ⇥ sizeof(int).

distance, Itakura-Saito distance, and KL-divergence, just to
cite a few) that are defined by a strictly convex and di↵eren-
tiable generator function f : X 7! R+ on a d�dimensional
convex domain X . The Bregman divergence based on f is
defined as:

d
f

(p, q) = f(p)� f(q)� hrf(q), p� qi (3)

where rf(x) is the gradient of the function f(x) at point q
and h., .i denotes the dot product between two vectors. Breg-
man divergences are not metrics since none of them satisfies
the triangle inequality and some of them fail to satisfy the
symmetry property as in the case for KL-divergence. When
the dissimilarity measure of interest fails to satisfy metric
axioms, data structures relying on metric space axioms can-
not be directly used.

For e�cient similarity search with KL-divergence, we
adopt the Bregman ball tree (bb-tree) [4, 23], a tree-based

index structure designed to work with the family of Breg-
man divergences, to avoid the costly sequential scan of the
database of index points with O(Zh) time. Similar to its
metric counterparts [5], bb-tree is built in a top-down fash-
ion, by recursively partitioning the database of items to be
indexed (H), and thus defining a hierarchical space partition
based on convex bodies called Bregman balls. A Bregman
ball with a center µ and a radius R is defined as:

B
f

(µ,R) = {i 2 H | d
f

(i, µ)  R}. (4)

Each node of the bb-tree corresponds to a set of database
items H

i

✓ H and is associated with a Bregman ball
B

f

(µ,R) such that H
i

⇢ B
f

(µ,R) which covers all data
points indexed in the subtree rooting at the node. Follow-
ing Nielsen et al. [23], the tree is built from the root to
the leaves, by recursively applying Bregman K-means++ at
each node to generate child nodes from the parent node.
The tree-branching factor is computed by applying Gaus-
sian clustering, which allows to find the optimal number of
children that avoids the overlapping of the Bregman balls of
the child nodes. The tree is built in O(h log h) time for h
index points.

We equip bb-tree with a novel approximate nearest neigh-
bors search procedure, that we introduce in the next section.

4. TIM QUERY PROCESSING
In this section we present the query evaluation mechanism

of the INFLEX framework. As anticipated in the previous
sections it consists of two phases:

1. similarity search aimed at quickly retrieving a good
set of index points for the given query (Section 4.1);

2. rank aggregation of the seed list associated to the re-
trieved index points (Section 4.2).

4.1 Searching for topic-wise similar items
The kind of search needed in the INFLEX framework has

several peculiar requirements, that make the standard ap-
proaches, such as range search or K-NN search, unsuitable.

• The search is neither based on a pre-specified radius
as in range search, nor on a number of neighbors as in
“K-NN search”. Instead, how many points to retrieve is
decided dynamically as the points are retrieved: if we
find, in the currently visited leaf, index points similar to



the query item, then we can stop the search. Otherwise
we might need to visit more leaves.

• An extreme case is when there is an index point whose
topic-distribution is identical (or extremely similar) to
the query item: in that case we want to directly return
the seed set of the index point, without further looking
for similar points and performing rank aggregation.

• The search must be fast and can be approximate, in the
sense that if it returns k results, those do not necessarily
have to be the k nearest neighbors. In any case, the se-
lected points will have a weight in the rank aggregation,
proportional to their distance from the query item: so
unimportant points will be treated accordingly.

Given these requirements, the similarity search in IN-
FLEX is implemented as follows. We visit the bb-tree in
depth-first search order, from the root to the leaf nodes,
heuristically moving towards the branch whose associated
Bregman ball has the center closer to the query item ~�

q

,
and adding the other children to a priority queue to ensure
the early successive exploration of sub-trees that most likely
contain the nearest neighbors. When we reach a leaf node,
we compute the divergence of the query item from all the
index points stored in the node. At this point we have three
options:

1. there exists a point i in the leaf such that D
KL

(~�
i

k
~�
q

)  ✏ for ✏ ⇡ 0. In this case we say we have an ✏-
exact match: we stop the search and return the top-k
elements in the seed set ⌧

i

;

2. the population of points in the leaf is considered “sim-
ilar enough” to the query item: we stop the search and
move to the rank aggregation phase with this group of
points;

3. the population of points in the leaf is not considered
“similar enough” to the query item: in this case we
consider the next leaf.

We have to formally define what does it mean for a group
of nodes to be “similar enough”. As anticipated abstractly
before, this concept depends on the number of index points
retrieved and on their distance from the query item. We in-
stantiate this concept by resorting to the application of the
Anderson-Darling test,5 which assesses whether a sample of
data comes from a population following a specific distribu-
tion. Following [23], this test has been previously applied
in the phase of building the tree index, to learn the branch-
ing factor of the bb-tree by applying the G-means proce-
dure [15]. Given a population of points which currently de-
fine a node in the bb-tree, we apply the Anderson-Darling
normality test to check if, given a confidence level ↵, the
hypothesis of normality is rejected. If this happens, the
node should be split. In a similar fashion, here we check
if the query item and the population of items contained in
the current leaf are compatible with a normal distribution.6

If we accept the null hypothesis that the underlying distri-
bution is Normal, then it is likely that the population of
5
http://en.wikipedia.org/wiki/Anderson-Darling_

test

6The test is performed by projecting all the considered
points in one dimension, where the application of the test is
straightforward, and assuming unknown mean and unknown
variance.

Algorithm 1: INFLEX similarity search

Input : bb-tree T , query item ~�

q

Output: approximate nearest neighbors of ~�
q

PQ T.root // init. priority queue

NN  ; // init. solution set

while PQ 6= ; do
n  top element in PQ
while n is not leaf do

c argmin
c2n.Children

D
KL

(µ
c

k ~�
q

)
PQ.insert(n.Children \ {c})
n c

end
if n is leaf then

if 9~�
i

2 X
n

s.t. D
KL

(~�
i

k ~�
q

)  ✏ then
return ~�

i

NN  NN [X
n

if similar enough(X
n

, q) then
return NN

end

end
return NN

indexed items in the current leaf can already provide good
neighbors for the query item, and hence we stop the search.
The early stopping criterion based on this test achieves good
performance in our framework, as we will show in Section 5.

Let B
n

denote the Bregman ball B(µ
n

, R
n

) associated
with node n, where µ

n

is its center and R
n

the radius, and
let X

n

denote the set of data points contained in node n.
The overall search procedure on the bb-tree is specified in
Algorithm 1.

Some implementation details are hidden in the pseu-
docode of Algorithm 1. The function similar enough(·, ·)
implements the Anderson-Darling test discussed earlier. For
practical reasons the function has been implemented with
the maximum number of leaves to consider. In all our ex-
periments we keep this value equal to 5.

When we need to select the next node to explore, we can
use the current solution set to produce a bound that helps
us to avoid the exploration of unpromising subtrees while
traversing back the tree. In particular, we use the maximum
divergence of the query point from the current solution set,
denoted by NN . Let � be such divergence:

� = max
i2NN

D
KL

(~�
i

k ~�
q

).

Analogous to the triangle inequality of metric spaces, we
apply the following pruning strategy. A yet unexplored node
n should be visited only if the divergence of ~�

q

from the clos-
est point in B

n

is less than �, otherwise the subtree rooted
at node n can be pruned:

min
~�

x

2B(µ
n

,R

n

)
D

KL

(~�
x

k ~�
q

) < �. (5)

To test whether a node should be explored based on this
strategy, we use the bisection search algorithm proposed by
Cayton [4] that calculates the Bregman projection onto a
Bregman ball e�ciently, by using primal and dual function
evaluations as the stopping criterion.

4.2 Aggregation of seed sets
We have retrieved a good-enough set of index points for

the given query Q(~�
q

, k), let us denote this set NN(~�
q

). The



next step is to aggregate their seed sets to produce the final
answer for the given TIM query. Let L

q

denote the set of the
pre-computed seed lists for the index points in NN(~�

q

), i.e.,
L

q

= {⌧
i

| ~�
i

2 NN(~�
q

)}. Our task can be nicely formalized
as an optimization problem named rank aggregation. Intu-
itively, the goal is to combine the rankings provided by the
pre-computed seed sets for topic-wise nearest neighbors to
one consensus ranking which minimizes the overall disagree-
ment. A rank aggregation function computes an aggregated
ranking order which minimizes the distance to the set of
orderings given as input. The ordering received as input
can specify either a full or partial ranking on the objects of
the domain and the techniques for rank aggregation di↵er
slightly if they are applied to the first case or the latter.

Assume that two full ranking lists ⌧1 and ⌧2, defined on
the same domain of n objects, are available. We can com-
pute their distance by measuring the number of pairwise
disagreements among their rankings. The Kendall-⌧ (K)
distance between two full lists is defined as:

K(⌧1, ⌧2) =
nX

i=1

nX

j=1

1{⌧1(i) � ⌧1(j) ^ ⌧2(j) � ⌧2(i)} (6)

where 1{.} is the indicator function and i � j is the com-
parison operator to denote if i is ranked ahead of j.

As we are dealing with the aggregation of lists that contain
top-` ranked nodes instead of complete rankings on the set
of users in the network, we can employ the extension of
Kendall-⌧ to the top-` case [11]:

K(⌧1, ⌧2) =
X

{i,j}2⌧

1

[⌧

2

K̄(p)
i,j

(⌧
i

, ⌧
j

) (7)

where 0  p  1 is a fix parameter7 and K̄(p)
i,j

(⌧
i

, ⌧
j

)
is the penalty defined accordingly to the following four
cases:

• when i and j appear in both lists: if they appear in
the same order (i � j in both lists or vice versa), then

K̄(p)
i,j

(⌧
i

, ⌧
j

) = 0;

• when i and j both appear in one list and only i appears
in the other: if i � j in the list where they both appear,
then K̄(p)

i,j

(⌧
i

, ⌧
j

) = 0, otherwise K̄(p)
i,j

(⌧
i

, ⌧
j

) = 1;

• when i appears in one list and j appears in the other
list, then K̄(p)

i,j

(⌧
i

, ⌧
j

) = 1;

• when i and j both appear in only one of the lists, then
K̄(p)

i,j

(⌧
i

, ⌧
j

) = p.

We normalize the Kendall-⌧ distance to lie in the [0, 1] in-
terval, where a distance of 0 corresponds to identical lists,
by dividing Eq. 6 and Eq. 7 with the maximum number of
possible disagreements among two full lists and among two
top-` lists, which is equal to `(` � 1)/2 and `2 + `(` � 1)p
respectively.

The Kemeny optimal rank aggregation problem requires
to identify the ranked list of nodes, ⌧⇤

q

, that has the mini-
mum Kendall-⌧ distance to all the ranked lists L

q

:

⌧⇤
q

= argmin
⌧

q

1
|L

q

|
X

⌧

i

2L
q

K(⌧
i

, ⌧
q

). (8)

7In our calculations, we use the neutral approach by setting
p = 0.5.

This optimization problem has shown to be NP-hard when
there are at least four lists to aggregate [9]. Solutions based
on Markov chains or by casting the problem as minimum-
cost matching in bipartite graphs have been proposed.8

As e�ciency is one of our main design requirements, we
turn our attention to fast rank aggregation techniques, such
as Borda [3] and Copeland [7] aggregation, whose result can
be improved by implementing a Local Kemenization proce-
dure.

Motivated by Social Choice Theory, rank aggregation
methods treat all available rankings with equal importance.
However, in our context, the aggregation should favor in-
dex lists of items who are more similar to the query item.
This idea is implemented in INFLEX by incorporating im-
portance weights into the rank aggregation.

The weighting can be further exploited to prune, for e�-
ciency sake, lists that contribute only marginally to the final
aggregation, gaining considerably in query execution time,
while losing very little in terms of accuracy.

Weighted ranking aggregation techniques and a procedure
for weight-based list pruning are discussed next.

Importance weights for rank aggregation. The rank
aggregation module receives as input a set L

q

of seed sets.
During the aggregation, the idea is to favor the rankings en-
tailed by index lists which correspond to the closest neigh-
bors with respect to query item. For each i 2 NN(~�

q

) we
compute a rank aggregation weight 0  w

i

 1, which is
inversely proportional to the KL-divergence from the query
item. Recall that the minimum value for KL-divergence is
0, while this measure is not bounded above. The weighting
function W : [0,1) 7! [0, 1] can be specified by applying a
non-linear transformation of the KL-divergence values:

W (~�
i

,~�
q

) =
eKL

max � eDKL

(~�
i

k~�
q

)

1� e�KL

max

, (9)

where KL
max

is an empirical upper bound of the KL-
divergence, computed as the distance between two corners
of the considered simplex and employing a smoothing factor
of machine-" value to handle zero probabilities during the
computation of the KL-divergence.

Selection of nearest neighbors. Since the task of rank
aggregation introduces a heavy processing burden, a careful
selection of which (and how many) seed lists to consider in
the aggregation is a key component towards speeding up the
query evaluation phase. Therefore, we propose a procedure
for the empirical selection of a subset of L

q

, based on the
weighting scheme introduced above.

The idea is that by iteratively inspecting the retrieved in-
dex points, from the largest to the smallest weight, we can
automatically distinguish neighbors that will contribute to
the weighted rank aggregation, from neighbors whose contri-
bution is marginal. The goal is to determine the minimum
number t  |L

q

|, such that the top-t nearest neighbors hold
the highest impact in the procedure of weighted rank ag-
gregation. We implement this test by iteratively comparing
the weight assigned to the t-th index lists with the ones as-
signed in the previous iteration. If the top-t nearest neigh-
bors are equally close to the query item, then their normal-
ized weights should tend to 1

t

. Let w̃
t

be the normalized
8Interested readers may refer to Schalekamp and van
Zuylen [25] for a detailed comparison of rank aggregation
algorithms, where algorithms having constant factor approx-
imation or PTAS are studied in detail.



weight assigned to the t closest point, where the normaliza-
tion is over all the weights up to t. We scan iteratively the
set of points and stop as soon as we find a t such that:

w̃
t

� 1
t
� 0.005.

Borda aggregation. Borda aggregation [3] is a positional

method that corresponds to the descending order arrange-
ment of the average Borda score for each element averaged
across all ranker preferences, where Borda score for an ele-
ment is the number of candidates below it in each ranker’s
preferences. Ordering an element by its Borda score is equiv-
alent to ranking the vertices by increasing indegree in the
corresponding weighted feedback arc set problem in tour-
naments and has a factor 5 approximation of the optimal
Kemeny ranking [8].

Let U ✓ V denote the union of users belonging to the near-
est neighbors’ pre-computed seed lists, i.e. U =

S
i2[1,t] ⌧i.

Moreover, let ⌧
i

(v) denote the rank of the node v in the
index list ⌧

i

, and let w
i

be the importance weight assigned
to the i-th index list. In the case of top-` lists aggregation,
the weighted Borda score for each v 2 V can be defined as
follows:

Borda

w(v) =

8
><

>:

tX

i=1

w
i

(`� ⌧
i

(v) + 1) if v 2 U
`+ 1 otherwise

When w
i

= 1, 8i 2 [1, t], weighted Borda score calculation
is equal to the normal Borda score calculation. For a given
query Q(~�

q

, k), the top-k nodes having the highest score are
returned as output.

Copeland aggregation. Copeland aggregation [7] is a
form of majority voting where the pairwise comparison
among the elements in the ranked lists are taken into ac-
count. Copeland score of an element v corresponds to the
number of elements v0 such that v was ranked ahead, v � v0,
in the majority of the lists. Copeland aggregation corre-
sponds to the sorting of elements by non-increasing indegree
on the majority tournament. The Markov Chain method
(MC4) [9] is a generalization of the Copeland aggregation.
For a given query Q(~�

q

, k), we formulate the Copeland score
calculation for each v 2 U as:

Copeland(v) =
X

v

02 U

1{(
tX

j=1

1{⌧
j

(v) � ⌧
j

(v0)} >

tX

j=1

1{⌧
j

(v0) � ⌧
j

(v)}}
(10)

This can be implemented by introducing a pairwise com-
parison matrix P

v,v

0 that stores the number of times that
v precedes v0 among given lists. We propose to incorporate
the importance weights by promoting, in the calculation of
the pairwise matrix P , those comparisons which come from
index lists having greater importance weight. This weight-
ing schema for Copeland aggregation is described in Algo-
rithm 2. Again, for a given query Q(~�

q

, k), the top-k nodes
having the highest Copeland scores are returned as output.

Local Kemenization. Local Kemenization [9] is a greedy
post-processing step which takes an initial aggregation re-
sult ⌧

q

and computes a locally Kemeny optimal aggregation
of {⌧1, ..., ⌧t}, that is maximally consistent with ⌧⇤

q

. This

Algorithm 2: Weighted Copeland

Input : Seed set ⌧

i

, importance weight w

i

8 ~�

i

2 NN(~�
q

)
Output: Weighted Copeland scores Copeland

w

U  [
i2[1,t]⌧i

P
v,v

0  0 8 {v, v0} 2 U
Copelandw  0 8 v 2 U
for each {v, v0} 2 U do

for i 1 to t do
if ⌧

i

(v) � ⌧
i

(v0) then
P
v,v

0  P
v,v

0 + w
i

else if ⌧
i

(v0) � ⌧
i

(v) then
P
v

0
,v

 P
v

0
,v

+ w
i

end

end
for each v 2 U do

for each v0 2 U do
Copelandw(v) Copelandw(v) + P

v,v

0

end

end

means that no better list, in terms of lower Kendall-⌧ dis-
tance to all the ranked lists in input, can be achieved by just
flipping an adjacent pair of elements.

We implement the procedure by an insertion sort algo-
rithm applied on the aggregated final list. The sorting starts
from the lowest ranked element in the list which is “bubbled
up” as long as it is preferred by the majority of the input
rankings. To apply this procedure for the weighted coun-
terparts of Borda and Copeland aggregation, we incorpo-
rate weights into this procedure by (i) using weighted ranks
for applying this on top of weighted Borda aggregation re-
sults, and (ii) using weighted pairwise comparisons on top
of weighted Copeland aggregation results.

5. EXPERIMENTS
In this section we describe the experimental setup for eval-

uating the e↵ectiveness and e�ciency of INFLEX. The over-
all evaluation aims at:

• Understanding and quantifying the relationship be-
tween the distance of items in the simplex and the dis-
tance between their respective ranked list of seed nodes.
In other words, to what extent the ranked seed list for
an item can be used to approximate the one of its neigh-
bors in the simplex?

• Evaluating the overall retrieval accuracy of the approxi-
mate nearest neighbors search on the bb-tree index, and
the performances of the early stopping criterion based
on the Anderson-Darling test.

• Comparing the performance of di↵erent rank aggrega-
tion methods and assessing the gain of the weighted
versions.

• Finally, and more importantly, evaluating the accuracy
of the answers provided by the overall framework and
its e↵ectiveness.

Experimental setting and dataset. Experiments were
performed on a real-world dataset from Flixster:9 a social
movie web site, where users can discover new movies and
share reviews and ratings with their friends.

9
http://www.cs.sfu.ca/~sja25/personal/datasets/
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Figure 3: Selection of index items: from the catalog (a), we learn a Dirichlet distribution that we use for
sampling a large number of points (b). Index items are the centroids identified by K-Means++ (c).
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Figure 4: High correlation between the KL-
divergence of items’ topic distributions and the
Kendall-⌧ distance among their seed sets.

The network is defined by roughly 30k users and 425k uni-
directional social links between them, while the propagation
log records the timestamp at which a user provided a rating
on a particular movie, out of a catalog of 12k items. This
dataset comes with the social graph and a log of past prop-
agations (ratings on movies), and it has been widely used to
test the e↵ectiveness of social influence propagation models
and influence maximization problems [13, 2]. We focus on
the influence episode defined by a user v rating a movie that
is later on rated by one of his friends u: in this case we see it
as a potential influence of v over u. In the movie context, it
is natural to assume that each item can exhibit several top-
ics (i.e. genres) and each user may exhibit di↵erent degree
of influence on di↵erent topics. We learn the topic-aware
influence probabilities and the item specific topic distribu-
tions, by applying the TIC learning procedure provided in
[2] and employing Z = 10 topics.

To evaluate the framework with respect to the aforemen-
tioned dimensions of analysis, we generated TIM queries ac-
cording to, both, a data-driven and a random perspective.
This di↵erentiation allows us to study the performance of
INFLEX under the assumption that query items will follow
the same distributions of already indexed items, but also to
assess its robustness to very diverse data distributions. To
this aim, out of a total of 200 query items, half were gen-
erated by sampling from the Dirichlet distribution learnt
from the item-specific distributions over topics provided by
TIC learning, and the remaining were randomly generated
by sampling from a uniform distribution on the simplex. As

stated in the introduction of this paper, for a given query
item, we assess the performance of the INFLEX framework
in terms of accuracy and query evaluation time.

A detailed analysis of the experimental evaluation is pro-
vided next.

Index construction. As discussed in Sec. 3.1, the proce-
dure for selection of items to include in the index starts with
estimating the Dirichlet distribution that maximizes the
likelihood of generating the item-specific distributions over
topics learnt from data. To this end, we apply the general-

ized Newton iteration procedure,10 described by Minka [20].
Then, we run Bregman K-means++ [1] over 100k samples
from the Dirichlet distribution with a number of clusters
equal to the number of items that we are willing to index.
In this paper we use h = 1000. The h centroids are identi-
fied by the clustering procedure form our set of index items
H. The output of this 3-phase process is given in Fig. 3:
by applying dimensionality reduction on the mapping of the
4Z�1 simplex to Euclidean RZ�1 with isometric log-ratio
[10], we show (a) the distribution over the topics for items
in the Flixster dataset, (b) 100k samples from the Dirichlet
distribution, and (c) index items.

Finally, for each item in the index we run the CELF++ al-
gorithm for selecting their seed set. Due to extremely heavy
computational burden of standard influence maximization
computation,11 we limit the seed budget for influence max-
imization to ` = 50.

To confirm the soundness of the main assumption that mo-
tivated INFLEX, we investigate in Figure 4 the relationship
between the KL-divergence among randomly selected pair of
items in the index, and the Kendall-⌧ distance among their
corresponding ranked lists. The high correlation coe�cient
clearly shows that the items that are close in the simplex
will tend to agree on the ranking of seed nodes, while their
agreement in identifying the influential nodes consistently
decreases with their distance.

Retrieval accuracy of similarity search. To assess the
accuracy of the similarity search on the bb-tree (Algorithm
1), we measure the recall of the search procedure in identify-
ing the top-K true nearest neighbors, with K 2 [5, 10, 15, 20]
on 40 randomly chosen query items. Figure 5 reports such
recall for varying number of visited leaves, without using the

10
http://research.microsoft.com/en-us/um/people/

minka/software/fastfit/

11In average, the computation required 60 hours for an item,
when employing 5k Monte Carlo trials with ` = 50.
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Figure 5: Retrieval accuracy in case of leaf-based
search.

Anderson-Darling test as early-stopping criterion. The plot
shows that when K  20, the 80% of the top-K true nearest
neighbors can be found in the first 5 visited leaves.
The accuracy of the search procedure equipped with the

Anderson-Darling test is between [0.61� 0.63] for 5  K 
20, which is less than a 18% recall loss with respect to the
case of visiting 5 leaves, using only half the KL-divergence
calculations (101 vs 200 on average). We found that the av-
erage number of leaves visited when applying early-stopping
criterion is 3.65. We further checked the statistical perfor-
mance of leaf-by-leaf retrieval against Anderson-Darling test
based early-stopping by paired t-tests (p < 0.05), on (i) the
maximum KL-divergence observed, (ii) the retrieval recall,
and (iii) the number of KL-divergence calculations. We
found that our early-stopping criterion statistically works
better than visiting up to 3 leaves, as it performs less KL-
divergences and higher retrieval recall (p < 0.01). Visiting 3
or more leaves statistically provides less KL-divergences and
higher retrieval recall (although with lower confidence level,
p < 0.10). Our findings are as expected: when the number
of visited leaves increases in the bb-tree, the probability of
finding true nearest neighbors increases. Thus, the choice
of using an early-stopping criterion is justified by a trade-
o↵ between retrieval recall and run-time, since visiting each
internal node during the traversal of the tree has a compu-
tational overload of solving a convex optimization problem
via Newton iterations, that is more costly than a linear-time
Anderson Darling test.

Accuracy of rank aggregation. In order to assess which
rank aggregation technique is better suited for INFLEX, we
conduct an analysis on the accuracy of the aggregations pro-
vided by Borda and Copeland. In Table 1, we report the av-
erage Kendall-⌧ distance for both unweighted and weighted
aggregations, obtained by processing TIM queries with dif-
ferent seed set sizes, while employing top-10 exact nearest
neighbors search to retrieve the similar items. In general,
weighted versions outperform the unweighted standard ones.
Copelandw achieves the highest accuracy (lowest Kendall-
⌧) and outperforms all the other techniques (paired t-tests,
p < 0.05). We also obtained similar results with varying
values for K.

TIM query evaluation. As highlighted by the previous
analysis, given a list of ranked lists, their best aggregation
can be achieved by employing the weighted Copeland ag-
gregation technique. However, how to e↵ectively select the
ranked lists to pass to the aggregation module is still an

open question.
INFLEX implements a fast approximate nearest neighbors

search based on an early stopping criterion and a procedure
for the automatic selection of ranking lists to aggregate. To
evaluate the e↵ect of the combination of these two compo-
nents in retrieving good seed lists for the aggregation phase,
we compare the final performance of INFLEX with the fol-
lowing alternatives:

• exactKNN: K-NN exact nearest neighbors search.
This is implemented by a complete visit of the bb-
tree, which provides true K nearest neighbors. The
main drawback of this approach is the costly traversal
time.

• approxKNN: K-NN approximate nearest neighbors
search, realized by setting a maximum number of
leaves to explore during the traversal of the bb-tree.
The K nearest neighbors among the index items in
the visited leaves are returned as output. This proce-
dure provides approximate nearest neighbors as out-
put, while it exhibits a speed up over exact search.

• approxKNN + Sel: K-NN approximate nearest
neighbors search with automatic seed lists selection.
Neighbors retrieved by the approximate nearest neigh-
bors search are further refined by applying our proce-
dure of automatic nearest neighbors selection. This is
expected to speed up the phase of rank aggregation.

• approxAD: fast approximate nearest neighbors
search based on the Anderson Darling test. In this
case, at each leaf visited, we apply the Anderson Dar-
ling test, to decide whether or not to continue the
search. This heuristic stopping criterion is expected
to speed up the search in the bb-tree. Its di↵erence
from INFLEX is that we do not apply the procedure
of nearest neighborsWhile on the other hand, by us-
ing the early-stopping criterion, we significantly have
lower number of divergence calculations: in average
(p < 0.01), half of the KL-divergence calculations (101
vs 200). selection.

Our experiments show that the best accuracy for K-NN
based methods is achieved by employing 10 neighbors, which
we assume as K in the following analysis. Figure 6 summa-
rizes the accuracy performance of the considered methods.
INFLEX outperforms in accuracy both the approximate K-
NN search with automatic selection of index points and the

Table 1: Kendall-⌧ distance between the seed sets
produced by aggregation algorithms and the ground
truth computed by standard o✏ine influence maxi-
mization computation.
Seed Set size k Borda Borda

w

Copeland Copeland

w

5 0.100 0.096 0.104 0.087
10 0.073 0.066 0.068 0.062
15 0.071 0.065 0.068 0.061
20 0.068 0.063 0.068 0.061
25 0.068 0.066 0.069 0.064
30 0.068 0.067 0.071 0.066
35 0.071 0.069 0.072 0.069
40 0.074 0.073 0.075 0.072
45 0.079 0.076 0.077 0.075
50 0.081 0.080 0.079 0.077



fast search procedure based on the Anderson Darling test.
The e↵ectiveness of the procedure for the automatic selec-
tion of index points is witnessed by consistent gain of IN-
FLEX over approxAD. The paired t-test between Kendall-
⌧ values for INFLEX and approxKNN shows that there is
no statistical di↵erence between their performance in accu-
racy (p < 0.01). As expected, we see that the top per-
forming method in terms of running time, given in Figure 7,
is approxKNN + Sel since it applies the procedure of
automatic selection of neighbors to already pre-determined
number of points and reduce the computational cost of the
rank aggregation procedure. INFLEX exhibits a consistent
gain in running time over K-NN based methods that do not
implement the automatic selection of index lists. Overall,
the general framework is able to provide highly accurate es-
timate of seed sets in less than 30 milliseconds.

An alternative way of assessing the e↵ectiveness of seed
sets produced by INFLEX is to consider their resulting ex-
pected spread, which can be computed by running Monte
Carlo simulations employing the TIC propagation model.
More specifically, we compare the spread achieved by seed
sets provided by INFLEX with the ones achieved by: (i)
standard o✏ine TIC influence maximization computation
(o✏ine TIC), (ii) topic-blind version of standard o✏ine in-
fluence maximization computation that is achieved by run-
ning the TIC model with a uniform topic distribution (of-
fline IC), and (iii) randomly selected seed sets for each item
(random).

As we can see from Figure 8, the seed sets produced by IN-
FLEX and similar aggregation-based alternatives proposed
in this paper can achieve an expected spread that is very
close to the one achieved by considering seed sets produced
by running compute-intensive TIC influence maximization.
On the other hand, seed sets identified by running topic-
blind influence maximization computation perform badly,
achieving less than half of the spread of the seed nodes pro-
vided by TIC influence maximization. We also provide in
Table 8 the Root Mean Square Error (RMSE) and its nor-
malized version (NRMSE) between spread values achieved
by di↵erent approaches and the ones achieved by o✏ine
TIC, which is assumed as ground truth. We see that, al-
though approxKNN + Sel performs better than INFLEX
in terms of running time, the expected spread achieved by
the solutions produced by INFLEX is much closer to the
one produced by o✏ine TIC than the solutions produced by
approxKNN + Sel (on average 40.05 vs 98.83).

The low deviation in terms of expected spread achieved by
INFLEX with respect to the ground truth, which is stable
also for di↵erent choices of k as shown in Table 3, statisti-
cally confirms the accuracy as well as the robustness of the
framework.

Figure 9 clearly shows that INFLEX is a good compromise
as it has almost the best expected spread but using less than
half the time.

6. CONCLUSIONS AND FUTURE WORK
As a first step towards enabling social-influence online an-

alytics in support of viral marketing decision making, in this
paper we propose an e�cient index for a very general type
of viral marketing queries: influence maximization queries
where each item is described by a distribution over a space
of topics. The challenge is given by the enormous number of
possible queries: essentially any point on the simplex of the
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topics space. Exploiting a tree-based index for similarity
search in non-metric spaces, a clever approximate nearest
neighbors search over the tree, and a weighted rank aggre-
gation mechanism, our index can provide, in few millisec-
onds, a solution very similar (Kendall-⌧ < 0.1) to the one
produced by the o✏ine influence maximization computation
that usually takes several days, while achieving a similar ex-



Table 2: Avg. Expected Spread of the seed sets for
k = 50.

Method Exp.Spread RMSE NRMSE

o✏ine TIC 1686.31± 60.06 - -
exactKNN 1679.47± 60.12 33.23 0.020
INFLEX 1673.26± 60.80 40.05 0.023

approxKNN 1673.24± 60.84 39.24 0.023
approxAD 1655.30± 61.45 55.05 0.033

approxKNN + Sel 1655.79± 61.31 98.83 0.059
o✏ine IC 737.15± 0.00 1020.61 1.384
random 118.47± 5.70 1609.30 13.583

Table 3: Accuracy of the expected spread of seeds
produced by INFLEX.
k INFLEX o✏ine TIC RMSE NRMSE

10 725.33± 32.24 730.39± 32.11 9.95 0.014
20 1066.20± 44.17 1073.28± 43.82 14.35 0.013
30 1314.08± 51.39 1321.32± 50.96 18.50 0.014
40 1513.73± 56.91 1521.21± 55.96 24.73 0.016
50 1673.26± 60.80 1686.31± 60.07 40.85 0.024
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Figure 9: Run-time vs. expected spread trade-o↵.

pected spread as the one achieved by standard o✏ine influ-
ence maximization computation (NRMSE < 3%).

In our future work, we plan to investigate the automatic
determination of the number of items to index for maintain-
ing the accuracy of the framework, the e�cient evaluation
of other types of viral marketing queries (for instance, when
specific market segments are targeted by the viral market-
ing campaign), as well as what-if analysis and visualization
paradigms for social-influence online analytics.
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