
Cold Start Link Prediction

Vincent Leroy
INSA Rennes, UEB

Rennes, France
vincent.leroy@irisa.fr

B. Barla Cambazoglu
Yahoo! Research
Barcelona, Spain

barla@yahoo-inc.com

Francesco Bonchi
Yahoo! Research
Barcelona, Spain

bonchi@yahoo-inc.com

ABSTRACT

In the traditional link prediction problem, a snapshot of a so-
cial network is used as a starting point to predict, by means
of graph-theoretic measures, the links that are likely to ap-
pear in the future. In this paper, we introduce cold start
link prediction as the problem of predicting the structure of
a social network when the network itself is totally missing
while some other information regarding the nodes is avail-
able. We propose a two-phase method based on the bootstrap
probabilistic graph. The first phase generates an implicit so-
cial network under the form of a probabilistic graph. The
second phase applies probabilistic graph-based measures to
produce the final prediction. We assess our method empiri-
cally over a large data collection obtained from Flickr, using
interest groups as the initial information. The experiments
confirm the effectiveness of our approach.

Categories and Subject Descriptors H.2.8 [Database
Management]: Database Applications - Data mining
General Terms Algorithms, Experimentation
Keywords Link prediction, probabilistic graph, social net-
works

1. INTRODUCTION
Link prediction, introduced by Liben-Nowell and Klein-

berg [15], refers to a basic computational problem underly-
ing social network evolution in time. Given a snapshot of
a social network at time t and a future time t′, the prob-
lem is to predict the new friendship links that are likely to
appear in the network within the time interval [t, t′]. As
Liben-Nowell and Kleinberg state, the link prediction prob-
lem is about to what extent the evolution of a social network
can be modeled using features intrinsic to the network itself.
Indeed, in their framework, they consider only the features
that are based on the link structure of the network.
In this paper, we tackle a similar, but fundamentally dif-

ferent problem, which we dub the cold start link prediction
problem: similar because we also aim at predicting links,
but different because we aim at doing this without any, even
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partial, knowledge of an existing link structure. Herein, we
assume that either the social network explicitly exists, but is
kept secret by its owner, or it does not exist at all. In both
cases, we are interested in predicting possible links among
the users of a service by exploiting other types of information
available, e.g., interest groups, tags, sales data.

Consider, for instance, a company C selling music online
and a general-purpose social networking service S. Suppose
C and S have made the following agreement: (1) S offers
a functionality so that users can make reviews of their fa-
vorite songs and these reviews are made available to their
contacts, and (2) when a user clicks on a song title, the user
is redirected to the corresponding page in C’s website, but
(3) S keeps the structure of its social network as a trade
secret (this may be a mandatory constraint due to privacy
regulations). Thanks to this agreement, users of S might
influence each other to buy songs, and the easiest way for
them to purchase songs would be through the website of C.
In this scenario, C only owns information about the buying
history of its customers, but has no explicit knowledge of the
social network implicitly underlying its set of customers.

The question tackled herein is the following: can C nev-
ertheless infer the social network (to an acceptable level of
accuracy), just using the information contained in the sales
history?

This would be useful for many reasons. First, it would
enable adoption of viral marketing strategies [8, 14]. Sec-
ond, it would facilitate social-network-based services, such
as providing personalized advertisement. Third, if C de-
cides, in the future, to adopt its own explicit social network,
this may be used to recommend possible friends to users,
thus speeding up the initial growth of the network.

In this context, we propose a two-phase method based on
the bootstrap probabilistic graph for cold start link predic-
tion. In the first phase, based on some limited information
(potentially, weakly correlated with the link structure of the
network), the method predicts the existence of links. The
output of this phase is a probabilistic graph, i.e., a graph
where each edge is labeled with a probability representing
the confidence of the prediction, or in other terms, the un-
certainty of the existence of a link. The second phase takes
as input the probabilistic graph and refines it by adopting
graph-theoretic measures as done in the classical link pre-
diction setting. The difference is that, in our case, the input
graph is probabilistic and hence the traditional measures
must be adapted to deal with this case [18].

We apply our method to a large data collection obtained
from Flickr, a popular online community for image and video



sharing. We keep the existing social network (made of di-
rected arcs1) as the ground truth for the link structure that
we aim to predict. As the available auxiliary information,
we use users’ memberships in interest groups.
Three observations are note-worthy. First, the cold start

link prediction problem is intrinsically a very difficult bi-
nary prediction problem due to the skewness of the target
variable. In fact, assuming directed arcs as in our context,
given n nodes, we have a universe of n2−n possible links, of
which only a very small fraction exists in the ground truth.
In our data, the positive class (existing links) constitutes
approximately 0.07% of all possible links.
The second observation is that we apply our method start-

ing with “little” information, which provides a very small
coverage of existing links. Indeed, in Flickr, interest group
membership2 is a very weak predictor of links, as a group
gathers people interested in photos regarding a specific sub-
ject or technique (e.g., “Nikon Selfportrait”, “HDR Panora-
mas”, “Cat and Dog: not Cat or Dog”), and they are not
groups of friends or small communities (as it is mostly the
case in Facebook groups). More precisely, in our data, con-
sidering only the users who belong to at least one group, we
have approximately 28M links, of which only 1.9% (approx-
imately 550K links) are among two users that share at least
one common group. Despite the difficulty of our prediction
task, our two-phase method based on the bootstrap proba-
bilistic graph can achieve good prediction performance.
Finally, it is very important to note that, even though the

first phase features used herein are geared to group member-
ship information, the overall framework we propose is gen-
eral and applicable to any input information. In some cases,
the available auxiliary information could be much more pre-
dictive than the one used in our experiments or more infor-
mation might be available. If this is the case, all available
information should be used in order to bootstrap the prob-
abilistic graph as accurately as possible.
Our contributions can be summarized as follows:
• We introduce cold start link prediction as the problem

of predicting the link structure of a social network as-
suming unavailability of an initial network and using
other available information.

• Our work has privacy and security implications as it
sheds light on to what extent a social network can
be reconstructed and how resilient an anonymization
solution is to link prediction attacks.

• We propose a two-phase method based on the boot-
strap probabilistic graph as a feasible solution to the
cold start link prediction problem.

• We apply our method to predict the link structure of
the Flickr social network by using only the interest
group membership information. As discussed previ-
ously, group membership is a weak predictor for friend-
ship and hence suits well to our purpose of starting the
social network with little available information.

• We assess the predictive power of various features
based on group membership (phase 1), such as the
time a user joins a group and the size of the group.
The features we use herein can be considered to be
somewhat general and are applicable to other problem
instances as long as the available information can be

1We use the terms arc and link interchangeably.
2http://www.flickr.com/groups

mapped to a group structure. For instance, a thread
on a discussion board can be mapped to a group, and
the same features can be used for predicting friendship
between the users of a bulletin board service.

• We adapt various graph-theoretic measures to deal
with probabilistic graphs (phase 2).

The rest of the paper is organized as follows. In the next
section, we discuss related work. In Section 3, we present
the formal definition of the problem and the proposed two-
phase method. In Section 4, we describe the data we use for
assessing our method, which is then developed in Section 5
(phase 1) and Section 6 (phase 2). Finally, in Section 7, we
discuss future research lines and conclude the paper.

2. RELATED WORK
Liben-Nowell and Kleinberg [15] introduce the link pre-

diction problem and show that simple graph-theoretic mea-
sures, such as the number of common neighbors, are suf-
ficient to efficiently detect links that are likely to appear
in a social network. Through the use of more elaborated
measures that consider the ensemble of all paths between
two nodes (e.g., the Katz measure), they further improve
the prediction quality. The graph features presented in Sec-
tion 6 are inspired by Liben-Nowell and Kleinberg’s work
but they are adapted to probabilistic graphs.

Taskar et al. [21] apply link prediction to a social network
of universities. They rely on machine learning techniques
and use personal information of users (music, books, etc.)
to increase the accuracy of predictions. Following a simi-
lar approach, O’Madadhain et al. [17] focus on predicting
events between entities and use the geographic location as
a feature. Clauset et al. [6] apply link prediction to biol-
ogy and physics using hierarchical models in order to detect
links that have not been observed during experimentation.
All these approaches rely on the availability of an initial
link structure for prediction while the method we present
addresses the cold start problem, i.e., the case where no ini-
tial link structure is available.

Several probabilistic models such as Markov logic [7], rela-
tional Markov networks [21], Markov random fields [5], and
probabilistic relational models [12] have been used to effi-
ciently capture the relation in data. Unfortunately, these
approaches have not been proved to scale as they have been
tested only on small data sets.

Van der Aalst et al. [22] extract a social network from logs
of interactions between workers in a company. Similar works
include mining email communications [3] and proximity in-
teractions [9]. In each case, the authors start with a very
dense graph and the idea is to identify the social network
in this graph. The difficulty of the task is due to the huge
amount of data. In our problem, we have the opposite situ-
ation: the information used to generate the bootstrap prob-
abilistic graph, which enables link prediction, is very sparse.
Hence, the information needs to be spread, not pruned.

Since we deal with reconstructing information that might
be considered sensitive (the links of a social network), our
work has privacy implications. In fact, our method can be
used by an attacker to threaten link privacy in a social net-
work, thus it can be used to test the resilience of anonymiza-
tion solutions. Several papers [2, 13, 16] study the prob-
lem of social network anonymization and the impact of the
available knowledge on the inference of hidden information
that should remain secret. Zheleva et al. [26] consider a so-



cial network in which some users hide their information and
others make it public. The applications presented include
predicting the country of Flickr users through their group
membership information. Their results indicate that group
membership is a weak predictor.

3. PROBLEM AND METHOD

3.1 Problem
We are given a set U of users and a multiset G of groups

of users. We denote the set of groups to which a user u
belongs to, m(u)= {g∈G|u∈ g, g ⊆ U}, as her membership
set. Our task is to reconstruct the links of a social graph
N = (U ,A), where the nodes are the users and the arcs
A ⊆ U×U represent a (one-way) relation between two users.
Reconstructing the social networkN means to predict which
of the links in U × U actually exist in A, or in other terms,
to build a function f : U × U → {0, 1}.

3.2 Method
We propose a two-phase method based on the bootstrap

probabilistic graph for cold start link prediction. During the
first phase, we predict the existence of links based only on
the group membership information. The output of the first
phase is the bootstrap probabilistic graph, i.e., a directed
probabilistic graph BPG=(U , E, p1), where E ⊆ U×U , and
every link (u, v)∈E is labeled with a probability p1(u, v)>0
representing the confidence (or uncertainty) about the link’s
existence, i.e., p1 : U × U → [0, 1].
In particular, after the first phase, we have p1(u, v)=0 and

p1(v, u)=0 for every user pair (u, v), where m(u)∩m(v)=∅.
This is because if two users have no groups in common,
a prediction cannot be made about the existence of a link
between them. Moreover, we have p1(u, v)>0 for every user
pair (u, v) such that m(u)∩m(v) 6= ∅ (this will also hold for
the reverse arc (v, u)). Links with null probabilities do not
exist in BPG.
The second phase takes as input the bootstrap probabilis-

tic graph BPG, and it refines the probability distribution p1
into a new probability distribution p2, by means of graph-
based features. Therefore, the output of the second phase
is a probabilistic graph PG = (U , E, p2). After the second
phase, some links that previously had p1(u, v) = 0 can now
possibly have a non-null score, p2(u, v)> 0, thus extending
the overall recall of the method.

3.3 Result presentation
In most real-world social networks, the links in a social

graph A form only a small fraction of the total number of
possible links, i.e., |A| ≪ |U|2. This means that accuracy is
not a very meaningful measure in this context, given that,
by predicting always 0 (the link does not exist), it is possible
to achieve an accuracy of 99.93% in our data. Also, com-
paring different predictors by means of precision and recall
is not very appropriate, given the very low maximum recall
achievable (only 0.037 in our data). Therefore, in order to
compare the performance of different predictive functions
by eliminating the skewness between possible and existing
links, we adopt the ROC curve metric [19] as the main way
of presenting our results. For the best predictor of each
feature group, we also provide recall/fallout ratios. Recall
is the ratio between the number of true positives (correctly
predicted existing links) and positives (existing links) while

Table 1: Number and type of links
Possible links Contact Friend Family

Total 39, 328, 640, 910 28, 249, 755 13, 529, 634 2, 145, 691

Phase 1 54, 945, 936 553, 977 282, 168 42, 426

Phase 2 1, 165, 664, 850 1, 072, 595 499, 811 76, 453

fallout is the ratio between the number of false positives
(links erroneously predicted to exist) and negatives (not ex-
isting links). Given a predictor function f , we may interpret
recall and fallout as the following probabilities, respectively:
p(f(u, v) = 1|(u, v)∈A) and p(f(u, v) = 0|(u, v) /∈A). Now,
suppose to have recall/fallout = 8 for a predictor f . This
means that for two users (u, v)∈A for whom a link exists, it
is 8 times more likely to have f(u, v)=1 than for two users
who are not connected.

4. DATASET
Flickr is a highly popular online social network, whose

primary objective is to facilitate sharing of images among
people. In Flickr, a user can place other users in three priv-
ilege classes: contact, friend, and family. Depending on the
class, the user can restrict access to its properties (e.g., im-
ages, videos). In this work, unless otherwise stated, we work
on the contact class. In Flickr, links are directed. In our
data, we found that approximately only 1/3 of the links are
unidirectional. Most of the features we use in Section 5 are
symmetric. This means that we predict the same likelihood
for links’ existence in both directions.

4.1 Dataset preparation
We sample a subset of the entire Flickr social network

by applying the snowball sampling strategy, starting from a
single, highly connected seed user and following the contact
links between users in an iterative manner. The adopted
sampling strategy increases the chance of selecting more ac-
tive users, who have higher connectivity in the network (i.e.,
more links). In our case, this is desirable as users with few
or no friends are relatively less interesting for our prediction
task. For each user in the sample set, we store all links and
groups associated with the user as well as some other infor-
mation in a MySQL database for latter processing. From
the sampled set of users, we remove the ones who are not
members of any group. This is because the proposed tech-
niques are applicable to users who have at least one group
membership.

4.2 Dataset properties
After the above-mentioned pruning, we are left with

198,315 users. The type and number of existing links are
reported in Table 1. The same table (second line) also re-
ports how many of these existing links are among two users
that have at least one common group: this is the maximum
number of links predictable in the first phase, or in other
terms, links for which we will have p1(u, v)> 0. In the sec-
ond phase, we use measures based on paths formed by the
links between users. This means that we cannot predict the
existence of a link between two users, each belonging to a
different connected component of the bootstrap probabilis-
tic graph. The maximum number of links predictable in the
second phase is also reported in Table 1 (the third line). The
number of groups we have is 69,793. Various properties of
our dataset are displayed in Table 2.



Table 2: Dataset properties
Property Min. Avg. Max.
# of users in a group 1 8.8 3,497
# of groups of a user 1 3.1 172
# of contact links of a user 1 142.5 11,956
# of friend links of a user 1 68.2 11,121
# of family links of a user 1 10.8 4,250

Table 3: Features evaluated in the bootstrap phase
Type Name Dir. Formula
# of sum ≥ |m(u)|+|m(v)|
groups prod ≥ |m(u)|×|m(v)|
Common overlap ≥ |c(u, v)|
groups frac_1 ≥ |c(u, v)|/|m(u)|

frac_2 ≥ |c(u, v)|/|m(v)|
jaccard ≥ |c(u, v)|/|m(u) ∪m(v)|

cos ≥
−−−→
m(u)·

−−−→
m(v)/(||

−−−→
m(u)||×||

−−−→
m(v)||)

Group min_s ≤ ming∈c(u,v) |g|
size avg_s ≤ avgg∈c(u,v)|g|

sum_rec_s ≥
∑

g∈c(u,v)(1/|g|)

ad_ad_s ≥
∑

g∈c(u,v)(1/ log(|g|))

Inter- min_t ≤ ming∈c(u,v) t(u, v, g)
arrival avg_t ≤ avgg∈c(u,v)t(u, v, g)
time sum_rec_t ≥

∑
g∈c(u,v)(1/t(u, v, g))

ad_ad_t ≥
∑

g∈c(u,v)(1/log(t(u, v, g)))

According to Fig. 1 (left), the frequency of group sizes
follows a highly skewed distribution, i.e., there are few, very
large but many, very small groups. 35.3% of groups have
only one member. Groups of size less than 3 constitute about
half of the total number of groups. Frequency distribution
for group membership is even more skewed. 47.0% of users
are members in only one group. The number of users who
are members in at most 10 groups constitutes 95.6% of the
total number of users. A highly skewed distribution is also
observed in frequency of users’ link counts (Fig. 1 (right)).

5. BOOTSTRAP PHASE

5.1 Basic features
In the first phase, we bootstrap the probabilistic graph

using the group membership information. In particular, we
explore four types of features: number of groups, number
of common groups, size of common groups, and difference
in joining time. Since, in this phase, the probabilities are
assigned to only the links between users who share at least
one group, in the rest of this section, we report ROC curves
computed only on this subset of links. For the recall/fallout
curves, we instead use the whole dataset, as this gives a
better idea about the discriminative power of a feature.
Throughout this section, the reader may refer to Table 3
for definitions of the features. We denote by c(u, v) the
set of groups that are common to both users u and v, i.e.,
c(u, v)=m(u) ∩m(v). The absolute value of the difference
in time that u and v joined group g is denoted by t(u, v, g).

5.1.1 Number of groups

The number of groups of a user might be a good indicator
of the user’s level of engagement and activity in the social
network. As the user is more active, he may tend to have
more links. Fig. 2 shows how the number of links of a user

Figure 1: (Left) Frequency distributions for group
membership and group size. (Right) Frequency dis-
tribution for the number of links that users have.

changes as the number of group memberships increases. We
observe a very linear behavior, which may indicate a correla-
tion between the number of groups and the number of links.
We also observe that the number of out-links increases at a
slightly faster rate than in-links as users join more groups.

We evaluate two features based only on the number of
groups. Given two users u and v, we define sum and prod,
respectively, as the sum and product of |m(u)| and |m(v)|
values. Obviously, as the feature values increase, the like-
lihood of having a link increases. In Fig. 3, we report the
recall/fallout ratio for different thresholds of prod. The plot
gives an indication of how predictive the feature is. As an
example, for two linked users u and v, it is 200 times more
likely to have |m(u)|×|m(v)|≥1000 than two users without
a link.

Fig. 4 shows the ROC curves for the two features: accord-
ing to the plot, the performances of sum and prod are very
close, but prod performs slightly better.

5.1.2 Common groups

Intuitively, being a member of the same groups should be
a strong indicator of the existence of a possible link. An
active group member may influence his existing friends to
join the group as new members. This means that members
of the same group are more likely to have existing friendship
links among themselves. From another perspective, groups
may be a suitable medium to meet other users and form
friendships, thus groups may lead to creation of new links.

Fig. 5 verifies this hypothesis by measuring the fraction of
links among users having membership in the same groups.
Specifically, for each value x of common groups, we compute

|{u,v∈U |x= |c(u, v)| ∧ (u, v)∈A}|

|{u,v∈U |x= |c(u, v)|}|
.

As expected, the fraction of links increases as the users have
more groups in common.

Fig. 6 reports the recall/fallout curve for different numbers
of common groups. We can observe that for two linked users,
the probability of having more than 10 common groups is
approximately 600 times larger than for two users that have
no link. This number grows to 1800 for the probability of
having no less than 24 common groups.

We evaluated five different features based on common
groups: overlap, which is the number of common groups;
frac_1 and frac_2, which are the overlap normalized by



Figure 2: Indegrees and outde-
grees of users as their number of
group memberships increases.

Figure 3: The recall/fallout curve
for the prod feature.

Figure 4: ROC curves for features
related to the number of group
memberships of users.

Figure 5: Fraction of links between
user pairs as their number of com-
mon groups increases.

Figure 6: The recall/fallout curve
for the overlap feature.

Figure 7: ROC curves for fea-
tures related to similarity of group
memberships.

the number of groups of the first and second users, respec-
tively; jaccard, which is the Jaccard coefficient; and cos,
indicating the cosine similarity commonly used in informa-
tion retrieval. ROC curves of these five features are shown
in Fig. 7. Interestingly, we observe that all features except
for overlap perform worse than random prediction, which
would correspond to the diagonal of the plot. This can be
easily explained with the very high number of pairs of users
being members of only one group. When two of such users
are part of the same group, they receive the maximum value
of frac_1, frac_2, jaccard, and cos although these two
users are very likely to be not linked. We observed this ef-
fect also for variations of these features, such as the weighted
cosine similarity feature (using tf-idf weighting), and also for
some other features with normalization.

5.1.3 Group size

It can be claimed that two users are more likely to be
friends if they are members of a small group than a large
group as 1) group founders are more likely to prefer their
friends over other users in invitations they send and 2) large
groups are more likely to be general-purpose groups, attract-
ing different users with equal likelihood. We verify this claim
in Fig. 8, which shows the density of links with increasing
group size. The link density is computed as

∑
g∈G |{u,v∈U | (u, v)∈A ∧ x= |g| ∧ g∈c(u, v)}|

|{g∈G |x= |g|}| × x× (x+ 1)
,

where the average link count for groups of size x is normal-
ized with the maximum possible link count (x×(x+1)).

For contact and friend links, we observe a significant drop
in density values at very small group sizes, followed by a
linear drop as the group size increases. The density of family
links is not affected much by the increase in the group size,
potentially, due to the very low number of such links.

We try four different features based on the size of com-
mon groups: min_s and avg_s denote the minimum and the
average size of the common groups, respectively; the sum-
mation of the reciprocal of size is denoted by sum_rec_s; and
Adamic/Adar-size is denoted by ad_ad_s. The last feature
is inspired by the measure defined by Adamic and Adar in [1]
for deciding when two personal home pages are strongly re-
lated, and then borrowed and adapted by Liben-Nowell and
Kleinberg [15] to deal with common neighbors in the context
of link prediction. Here, we re-adapt this measure to deal
with the size of common groups and compute

ad ad s(u, v) =
∑

g∈c(u,v)

1

log(|g|)
.



Figure 8: Link density within a
group as group size increases.

Figure 9: The recall/fallout curve
for the ad_ad_s feature.

Figure 10: ROC curves for fea-
tures related to group sizes.

Figure 11: Fraction of links with
varying inter-arrival time.

Figure 12: The recall/fallout curve
for the ad_ad_t feature.

Figure 13: ROC curves for fea-
tures related to the difference in
dates of membership.

The recall/fallout curve for ad_ad_s is displayed in Fig. 9.
We observe that the probability of having ad_ad_s(u, v) ≥ 1
for an existing link (u, v) is approximately 200 times larger
than for a non-existing link (u, v), and the ratio keeps grow-
ing almost linearly.
Fig. 10 shows that features that are based on group size

perform quite well, with ad_ad_s outperforming the others.

5.1.4 Difference in joining time

In the last set of features, we investigate the temporal
coherency between linked users joining the same group. We
may expect that friends are likely to inform each other from
existence of a group just before (or just after) joining it.
Hence, we may expect that linked users are likely to join the
same group with small time gaps (inter-arrival time).
Fig. 11 shows the fraction of links with increasing inter-

arrival time. For each possible inter-arrival time value x
(discretized into days), we compute

|{u,v∈U , g∈G | (u, v)∈A ∧ x= t(u, v, g) ∧ g∈c(u, v)}|

|{u,v∈U , g∈G |x= t(u, v, g) ∧ g∈c(u, v)}|
.

According to the figure, as expected, linked users are more
likely to join the same group with a small inter-arrival time.
It is interesting to note that an increase is observed in the

likelihood of having a link, around a year inter-arrival time.
This may be explained by the existence of “seasonal”groups,
i.e., groups that refer to events held once per year and that
attract new members in that period (e.g., “Glastonbury Fes-
tival” or “Christmas Worldwide”).

As the features, we try the same feature set we used for
the group size, simply by replacing group size with inter-
arrival time: min_t, avg_t, sum_rec_t, and ad_ad_t. As in
the case of group size features, Adamic/Adar-time (ad_ad_t)
performs the best among all features of this class (Figs. 12
and 13). The irregular shape of the ROC curve as well as
of the recall/fallout curve are due to the seasonal behavior
discussed before.

5.2 Combining basic features
Next, we try to combine a number of features from pre-

vious sections to create a single, hybrid feature with higher
predictive power than the basic features. For this purpose,
we evaluate various possible combinations of our best per-
forming features, trying to find a good trade-off between pre-
dictive power and simplicity (which also translates to gen-
erality). The best performing combination turns out to be
ad ad s×ad ad t×log prod, referred to as combined.

An important observation is that the features ad_ad_t,
ad_ad_s, and prod perform relatively well for high, medium,
and low confidence intervals, respectively. This is the rea-



Figure 14: ROC curves for the best
feature from each category and the
best combined feature.

Figure 15: Mapping scores to prob-
abilities, for generating the boot-
strap probabilistic graph.

Figure 16: Distribution of proba-
bilities in the bootstrap probabilis-
tic graph.

son for the combined feature, which unifies them, to perform
the best across all intervals. No features from the class using
the number of common groups is directly used in the com-
bined feature as this is subsumed in the two Adamic/Adar
features, which compute a sum over all common groups.
Fig. 14 compares combined against the best-performing

feature from each of the four categories. We use combined

to bootstrap the probabilistic graph, as shown next.

5.3 Bootstrap probabilistic graph
So far, we have proposed various measures and evaluated

their predictive power. We have then combined them un-
der a simple but yet effective feature. We now finalize the
first phase of our method by producing the bootstrap prob-
abilistic graph. To this end, we need to convert the scores
provided by the combined feature into probabilities. This is
a mandatory step to be able to combine the values of the
edges in a meaningful way.
Converting scores to probabilities is not straightforward

since the relation between them is often not linear. This
problem has been studied for different kinds of classifiers [11,
23, 24, 25], but with score distributions different from the
one we observe in our case.
In Fig. 15, we observe a logarithmic shape in the distri-

bution of probabilities with respect to scores. Using a curve
fitting algorithm, we could map the function to the data,
but depending on the feature used, this mapping could be
completely different. In our case, to remain general, we just
assume the knowledge that it follows a logarithmic distribu-
tion. We design a very simple function that maps the highest
score output by the combined feature to a probability of 1
and assigns the remaining probabilities as

probability=
log(score+1)

log(max score+1)
.

Fig. 15 shows that our simple approximation is very rough.
However, it is good enough as it will be shown in the next
section. The probability distribution in the bootstrap prob-
abilistic graph is reported in Fig. 16. The graph consists of
1,238 connected components, of which 42 have more than
1,000 nodes, 10 have more than 5,000 nodes, and the largest
connected component has more than 20,000 nodes.

6. PROBABILISTIC GRAPH MEASURES

6.1 Graph-theoretic features
In the first phase of our method, we have predicted, for

some pairs of users, the probability to have a link. In the
second phase, we refine and extend this prediction by consid-
ering transitivity of contact relationship. As shown in [15],
users who have many common contacts are more likely to be
friends. Using graph-based features, we can spread the link
prediction to pairs of users who have no common groups but
share contacts. Therefore, we compute graph-based mea-
sures on the bootstrap probabilistic graph for all pairs of
users who are in the same connected component. If two users
are not connected by a path in the probabilistic graph, then
they will have a null probability also after phase 2. In the
following, we adapt to the probabilistic case three graph-
based measures that are reported to perform well in [15]:
common_neighbors, katz, and rooted_pagerank.

6.1.1 Probabilistic common neighbors

Having a high number of common contacts may be an
indication of the existence of a link. We adapt this idea
to our probabilistic graph in a straightforward way. For a
given user pair (u, v), common_neighbors simply computes
the sum of the probability that each node is connected to
both u and v, i.e.,

common neighbors(u, v) =
∑

y∈U

p1(u, y)× p1(v, y).

A consequence of this definition is that all pairs of users who
are more than two hops away in the graph are assigned a
zero score. Recall that the probability p1 computed in the
first phase is symmetric, i.e., p1(u, v)=p1(v, u).

6.1.2 Probabilistic Katz

The Katz measure computes a score between two users
based on the number of paths existing between them, ex-
ponentially damped by length to count short paths more
heavily. In other words, a path of length ℓ is weighted by
βℓ, where 0 ≤ β ≤ 1. We adapt this measure to deal with
probabilistic graphs by further weighting each path by its
existence probability, which is the product of the probabili-
ties of the links that compose it.



Figure 17: ROC curves for the
common_neighbors.

Figure 18: ROC curves for the
katz feature.

Figure 19: ROC curves for the
rooted_pagerank feature.

Let path〈ℓ〉
u,v be the set of paths of length ℓ between u and v

in U and pathProb(h) be the existence probability of a path
h. Then, katz is computed as

katz(u, v) =

∞∑

ℓ=1

(βℓ ×
∑

h∈path
〈ℓ〉
u,v

pathProb(h)).

6.1.3 Probabilistic rooted PageRank

The rooted_pagerank feature computes a score between
nodes u and v by running rooted PageRank, starting from
u. We use an algorithm [10] based on random walks to
get an estimation of PageRank scores. Inspired by [18], we
adapt it to our probabilistic graph by sampling existing links
at each step of a walk using the probabilities in the graph.
The walk continues using an existing edge chosen at random
as in the classic unweighted version of PageRank. We set
a stopping probability α and run W walks for each node.
rooted pagerank(u, v) is not null if at least one walk start-
ing at u reaches v. Thus, a user u potentially has a positive
score with all other users in his connected component. How-
ever, if the number of walks and link probabilities are both
very low, this may not be the case. If u and v are not in the
same component, then the link (u, v) receives a null score.

6.2 Experimental results
We evaluate the three features by comparing our method

based on the bootstrap probabilistic graph (BPG) with two
alternative methods. These methods work on deterministic
graphs (DG) obtained from BPG, by selecting only the links
with a probability higher than a given threshold. Note that
since the probability function we designed is monotonic, this
is equivalent to a score threshold. It is also worth noting that
using a high threshold would compromise seriously the recall
of the method. Indeed, a larger threshold implies that fewer
links will be selected, which in turn implies a smaller density
for the resulting graph and thus a large number of small com-
ponents. Since graph-based features produce scores only for
pairs of users belonging to the same connected component,
using a large threshold would give very small recall. There-
fore, for the two alternative methods, we use 0 and 0.005
as the thresholds. The methods are accordingly named as
DG 0 and DG 0.005. While DG 0 can achieve the same re-
call as BPG, DG 0.005 can only predict a smaller number
of links due to the lower density as discussed above.

Fig. 17 displays the ROC curves for common_neighbors.
Despite its simplicity, common_neighbors performs quite
well with BPG as seen from the sharp rise in the true pos-
itive rate for predictions with high confidence (early data
points). The ROC curve of DG 0 remains always under the
curve of BPG. DG 0.005 produces results closer to BPG,
but at the price of a lower recall. In the figure, some por-
tion of the curves are not displayed for better visibility of
the rest (the last data point is (0.607, 0.953) for DG 0 and
BPG curves).

For katz, following [15], we set β to 0.005. For scalability
reasons, we also set an upper bound on the path length.
Since BPG is quite dense, the number of paths becomes
important for large values. As β is small and thus long paths
have very little weight, the impact on precision is negligible.
In our experiments, pairs that are more than two hops away
in BPG receive a zero score. Fig. 18 shows the performance
of katz. BPG still outperforms DG 0 and DG 0.005, but
the gap is small, relative to common_neighbors.

For experiments on rooted_pagerank, we set α to 0.15
and W to 1000. According to the ROC curves shown in
Fig. 19, rooted_pagerank performs poorly, relative to com-

mon_neighbors and katz, in terms of both coverage of pre-
dictions and their quality. Increasing W does not have a
significant effect on the result quality, but it increases the
coverage of predictions. We believe that rooted_pagerank

can be efficiently applied on a given user to sort the other
users by contact probability. However, the scores obtained
through this measure are not comparable across different
users. This is due to the fact that PageRank shares a fixed,
total score among all users. A user with many potential
neighbors is assigned a score lower than a more isolated one,
resulting in poor quality predictions at a full graph scale.

Fig. 20 brings together the ROC curves for the combined

feature and the three phase 2 features (assuming the BPG
scenario). The plot demonstrates the gain achieved by phase
2 over the results of phase 1. The performance of katz is
seen to be very close to common_neighbors.

As a representative, Fig. 21 shows the precision–recall plot
for the katz feature. BPG achieves pretty high precision
values relative to DG 0 and DG 0.005 under the equal recall
constraint. Despite the difficulty of the problem, precision
and recall values achieved by BPG indicate the validity of
the proposed method (e.g., at a recall of 1%, we observe a
precision around 31%).



Figure 20: ROC curves for the
three phase 2 features and the com-

bined feature from phase 1.

Figure 21: Precision–recall for the
katz feature.

Figure 22: Recall/fallout for the
common_neighbors feature.

Figure 23: ROC curves for the
common_neighbors (friends).

Figure 24: ROC curves for the
katz feature (friends).

Figure 25: ROC curves for the
rooted_pagerank feature (friends).

As another representative, Fig. 22 shows the recall/fallout
curve for the common_neighbors feature. BPG is able to
leverage the low probability edges to increase recall with-
out losing precision while non-probabilistic approaches ei-
ther prune this noise and lose recall or use these edges but
suffer from low precision.
We have also conducted experiments using friend links in-

stead of contacts. We do not report results for family links
due to space limitations. Figs. 23, 24, and 25 show perfor-
mance of common_neighbors, katz, and rooted_pagerank,
respectively, in predicting friend links. For all three tech-
niques, higher prediction quality is achieved relative to con-
tact links.
In this work, we have preferred not to combine the pre-

dictive power of the three features of phase 2 (e.g., by
means of machine learning techniques). The rationale be-
hind this choice is two-fold. First, as we have explained
before, rooted_pagerank is not suitable for prediction at a
full graph scale. Second, common_neighbors can be seen as
a special case of katz in which the maximum path length is
2 and β is set to 1. Therefore, we expect only little improve-
ment in prediction accuracies by further combinations.

7. CONCLUSIONS AND FUTURE WORK
We presented the cold start link prediction problem and

a two-phase method that enables link prediction in the ab-
sence of a social network. The first phase of the proposed

method generates a bootstrap probabilistic graph using any
available feature while the second phase applies various link
prediction algorithms to this probabilistic graph. We tested
our approach over a data set obtained from Flickr, by using
group memberships as the only available information.

For the sake of generality, we applied our method to inter-
est groups, a very simple and common kind of information
in social networks. Thus, the features we present can be
applied to other networks. Obviously, as more information
is available, higher prediction accuracies can be achieved.

In the context of Flickr, we might use information that
is more specific to photography in order to improve predic-
tion performance. For instance, in [20], Singla and Weber
study the impact of the social network on camera brands of
Flickr users. We could leverage such information to create
more accurate predictors. Similarly, as observed in [4], in-
formation diffusion often follows the social network. This is
known as the social cascade phenomena and can be observed
in Flickr when users favorite others’ pictures and post com-
ments about them. If this information is available, it can be
used as a bootstrap feature to generate a probabilistic social
graph that matches the observed social cascade.

As pointed in Section 2, we believe that our method can be
applied as an attack against link privacy in social networks.
Determining to which extent our approach can be combined
with existing attacks to improve the predictive power of pub-
licly available attributes is worth future research.



In this work, we have adapted the graph-theoretic algo-
rithms in [15] to probabilistic graphs. Potamias et al. [18]
introduces different measures of distances in probabilistic
graphs and present algorithms to compute k-nearest neigh-
bor queries. We believe that probabilistic graphs are a pow-
erful tool and designing algorithms to extract their charac-
teristics can create new approaches also to other research
problems.
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