
Fast Shortest Path Distance Estimation in Large Networks

Michalis Potamias1∗ Francesco Bonchi2 Carlos Castillo2 Aristides Gionis2

1Computer Science Department 2Yahoo! Research
Boston University, USA Barcelona, Spain

mp@cs.bu.edu {bonchi,chato,gionis}@yahoo-inc.com

ABSTRACT
In this paper we study approximate landmark-based meth-
ods for point-to-point distance estimation in very large net-
works. These methods involve selecting a subset of nodes
as landmarks and computing offline the distances from each
node in the graph to those landmarks. At runtime, when
the distance between a pair of nodes is needed, it can be
estimated quickly by combining the precomputed distances.

We prove that selecting the optimal set of landmarks is
an NP-hard problem, and thus heuristic solutions need to
be employed. We therefore explore theoretical insights to
devise a variety of simple methods that scale well in very
large networks. The efficiency of the suggested techniques
is tested experimentally using five real-world graphs having
millions of edges.

While theoretical bounds support the claim that random
landmarks work well in practice, our extensive experimenta-
tion shows that smart landmark selection can yield dramat-
ically more accurate results: for a given target accuracy, our
methods require as much as 250 times less space than se-
lecting landmarks at random. In addition, we demonstrate
that at a very small accuracy loss our techniques are several
orders of magnitude faster than the state-of-the-art exact
methods. Finally, we study an application of our methods
to the task of social search in large graphs.

Categories and Subject Descriptors H.4.3 [Informa-
tion Systems Applications]: Communications Applica-
tions
General Terms Algorithms
Keywords Graphs, shortest-paths, landmarks methods.

1. INTRODUCTION
Understanding the mechanisms underlying the character-

istics and the evolution of complex networks is an impor-
tant task, which has received interest by various disciplines
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including sociology, biology, and physics. In the last years
we have witnessed a continuously increasing availability of
very large networks; blogs, sites with user-generated con-
tent, social networks, and instant messaging systems nowa-
days count hundreds of millions of users that are active on
a daily basis. For graphs of this size, even seemingly simple
algorithmic problems become challenging tasks.

One basic operation in networks is to measure how close
one node is to another, and one intuitive network distance
is the geodesic distance or shortest-path distance. Comput-
ing shortest-path distances among nodes in a graph is an
important primitive in a variety of applications including,
among many others, social-network analysis, VLSI design
in electronics, protein interaction networks in biology and
route computation in transportation.

Recently, new motivating applications have arisen in the
context of web search and social networks. In web search,
the distance of a query’s initiation point (the query context)
to the relevant web-pages could be an important aspect in
the ranking of the results [34]. In social networks, a user
may be interested in finding other users, or in finding content
from users that are close to her in the social graph [30]. This
socially sensitive search model has been suggested as part
of the social network search experience [2, 36]. Using the
shortest path distance as a primitive in ranking functions
for search tasks is the main motivation of our work.

Although computing shortest paths is a well studied prob-
lem, exact algorithms can not be adopted for nowadays
real-world massive networks, especially in online applica-
tions where the distance must be provided in the order of a
few milliseconds. A full breadth-first search (BFS) traversal
of a web-graph of 4M nodes and 50 M edges takes roughly
a minute in a standard modern desktop computer.1 For
the same graph the best known point-to-point shortest path
algorithms that combine Dijkstra with A* and landmarks,
require to access an average of 20 K nodes in order to de-
termine the shortest path between two nodes. On the other
hand, precomputing all the shortest paths and storing them
explicitly is infeasible: one would need to store a matrix of
approximately 12 trillion elements.

The methods described in this paper use precomputed in-
formation to provide fast estimates of the actual distance in
very short time. The offline step consists of choosing a sub-
set of nodes as landmarks (or reference objects) and comput-
ing distances from every node to them. Such precomputed
distance information is often referred to as an embedding.

Our contribution. In this paper we present an extensive
analysis of various strategies for selecting landmarks. We
1Using the BFS routine of C++ Boost library.



devise and experimentally compare more than 30 strategies
that scale well to very large networks. For presentation sake,
we report the best ones; in case of ties we report the simplest.
Our experimentation shows that for a given target accuracy,
our techniques require orders of magnitude less space than
random landmark selection, allowing an efficient approxi-
mate computation of shortest path distances among nodes
in very large graphs. To the best of our knowledge, this is
the first systematic analysis of scalable landmarks selection
strategies for shortest-path computation in large networks.
Our main contributions are summarized as follows:

• We define the problem of optimal landmark selection
in a graph and prove that it is NP-hard (Section 3).

• We theoretically motivate and suggest simple and in-
tuitive strategies to choose landmarks that scale well
to huge graphs (Section 4).

• We demonstrate the effectiveness and robustness of
our techniques experimentally using five large different
real-world networks with millions of edges (Section 5).

• We report significant efficiency gains with respect to
the state-of-the-art. We study the triangulation per-
formance of landmark selection methods (Section 5.4).
Although theoretical bounds have been proven in lit-
erature [24] for random landmarks selection we prove
empirically that our methods outperform it by large
margins on real networks. With respect to exact al-
gorithms we show that several orders of magnitude in
efficiency can be traded-off with a very small loss in
accuracy using the proposed techniques (Section 5.5).

• We apply our methods to social search (Section 6),
showing high precision and accuracy in the problem
of finding the closest nodes in the graph that match a
given query.

In our experimental evaluation we use real world networks:
social graphs with explicit or implicit links from Flickr, a
graph based on the communication network of the Yahoo!
Instant Messenger service, and the coauthorship graph from
the DBLP records. We also use a web-graph defined by the
Wikipedia pages and their hyperlinks.

Paper structure. In Section 2 we outline the related work,
and in Section 3 we introduce our notation and our algo-
rithmic framework. Section 4 presents a series of landmark
section strategies which are experimentally evaluated in Sec-
tion 5. Section 6 evaluates an application of our methods for
fast social-network-aware search. Finally, Section 7 presents
some concluding remarks.

2. RELATED WORK
Exact shortest-path distances. Dijkstra described the
algorithm to compute single source shortest paths (SSSP) in
weighted graphs with n nodes and m edges from a node to all
others [11]. The cost is O(n2) in general and can be reduced
to O(m+n log n) for sparse graphs. For unweighted graphs,
shortest paths can be computed using Breadth First Search
(BFS) in time O(m+n). Floyd-Warshall algorithm employs
dynamic programming to solve the all-pairs shortest paths
(APSP) problem in an elegant and intuitive way [13] in time
O(n3). Still, the complexity of computing APSP by invoking

n Dijkstra/BFS computations is asymptotically faster, since
it costs O(nm + n2 log n) and O(nm) respectively.

The state of the art in point to point shortest path (PPSP)
queries involves combining bidirectional Dijkstra with A*
and lower bounds (ALT algorithms) [16, 17, 37, 27, 22].
ALT algorithms employ landmarks in order to prune the
search space of the shortest path computation. Their land-
marks are similar to the ones we experimented with for the
lower-bound estimation (see Section 4.4); instead, in this
paper, we use heuristics for selecting landmarks that work
well with upper-bound estimates. Our paper addresses a
different problem than the one in [16, 17, 37, 27, 22] since
we are interested only on the length of a shortest path, not
the path itself. Thus, we avoid any kind of online Dijk-
stra/BFS traversals of the graph. However, to demonstrate
the savings that one can obtain if the path itself is not of
interest, and if only the distance length between two nodes
is important, in Section 5 we compare our method to these
state-of-the-art techniques and demonstrate that orders of
magnitude in efficiency can be gained with a very small loss
in accuracy.

Indexing for approximate shortest-paths. We are in-
terested in preprocessing a graph so that PPSP queries can
be answered approximately and quickly at runtime. Thorup
and Zwick [32] observe that this problem is probably the
most natural formulation of the APSP. In their paper they
obtain the result that for any integer k ≥ 1 a graph can be

preprocessed in O(kmn
1

k ) expected time, using a data struc-

ture of size O(kn1+ 1

k ), and a PPSP query can be processed
in time O(k). The quotient of the division of the estimated
distance and the exact is guaranteed to lie within [1, 2k−1].
For k = 1 we get the exact solution of computing all shortest
paths and storing them, which is prohibitively expensive.

For k = 2 the estimate may be three times larger than
the actual distance. In large real-world graphs this bound is
already problematic because distances are short due to the
small-world phenomenon. In a small-world network, such as
the Flickr-contacts graph described in Section 5, for an esti-
mated distance of 6, the exact distance is only guaranteed to
lie within the interval [2, 6], along with almost every pairwise
distance in this graph. A survey on exact and approximate
distances in graphs can be found in [38].

Embedding methods. Our work is related to general em-
bedding methods. In domains with a computationally ex-
pensive distance function, significant speed-ups can be ob-
tained by embedding objects into another space and using a
more efficient distance function, such as an Lp norm. Several
methods have been proposed to embed a space into a Eu-
clidean space [6, 20]. There have been attempts to optimize
the selection of reference objects for such a setting [3, 35].
Other dimensionality reduction techniques are also widely
studied especially in theory and machine learning.

Landmarks have already been used for graph measure-
ments in many applications [10, 26, 31, 28] such as round-
trip propagation and transmission delay in networks: how-
ever, how to optimally select the location of landmarks has
not been extensively studied.

Kleinberg et al. [24] discuss the problem of approximating
network distances in real networks via embeddings using a
small set of beacons (i.e., landmarks). Of most interest is
the fact that they introduce in their analysis the notion of
slack, as a fraction of pairs in the network for which the



algorithm provides no guarantees. Their analysis considers
choosing beacons randomly. In this paper we show that in
practice, simple intuitive strategies work much better than
the random. Abraham et al. [1] generalize the metric embed-
ding with slack. On another perspective, computing shortest
paths in spatial networks has also attracted interest recently
[25, 29]; our work is different since we focus on graphs that
exhibit complex social network or web-graph behavior.

Applications. Our work is also tightly connected to the
various notions that have been introduced to measure the
centrality of a vertex. Betweenness centrality measures the
amount of shortest paths passing from a vertex while close-
ness centrality measures the average distance of a vertex
to all other vertices in the network [15]. Brandes [7] gave
the best known algorithm to compute the exact between-
ness centrality of all vertices by adapting the APSP Dijk-
stra algorithm. The algorithm runs in O(nm+n2logn) time,
which is prohibitive for large graphs. Bader et al. [4] gave
a sampling-based approximation algorithm and showed that
centrality is easier to approximate for central nodes. In our
work, we use closeness centrality as a strategy in choosing
central points as landmarks in the graph.

Fast PPSP computation is becoming very relevant for In-
formation Retrieval. Socially sensitive search in social net-
works and location-aware search are attracting a substantial
interest in the information retrieval community [5]. For in-
stance, it has been found that people who chat with each
other are more likely to share interests [30]. An experi-
ment discussed in Section 5 considers ranking search results
in social networks based on shortest path distances. This
problem has also been studied recently by Vieira et al. [36].
Their work is also based on landmarks, but their landmarks
are chosen randomly. Since our work has been inspired by
the task of social search we revisit it in Section 6 and show
that our techniques outperform the random landmark selec-
tion [36] by very large margins.

Approximation methods for computing other graph prox-
imity functions that are based on random walks, such as
personalized pagerank and random walk with restart, have
also been studied recently [14, 33]. The growing interest in
involving context and/or social connections in search tasks,
suggests that distance computation will soon be a primitive
of ranking functions. The restriction is that the ranking
functions of search engines have hard computational dead-
lines to meet, in the order of hundreds of milliseconds. Our
methods can provide accurate results within these deadlines.

3. ALGORITHMIC FRAMEWORK
In this section we introduce the notation that we use in the

rest of the paper. We then describe how to index distances
very efficiently using landmarks. We formally define the
landmark-selection problem that we consider in this paper,
and prove that it is an NP-hard problem.

3.1 Notation
Consider a graph G(V, E) with n vertices and m edges.

Given two vertices s, t ∈ V , define πs,t = 〈s, u1, u2, ..., uℓ−1, t〉
to be a path of length |πs,t| = ℓ between s and t, if {u1, ..., uℓ} ⊆
V and {(s, u1), (u1, u2), . . . , (uℓ−1, t)} ⊆ E, and let Πs,t be
the set of all paths from s to t. Accordingly, let dG(s, t)
be the length of the shortest path between any two vertices
s, t ∈ V , we refer to this as the geodesic distance, or dis-
tance, between such vertices. In other words, dG(s, t) =

tus
t

u
s

Figure 1: Illustration of the cases for obtaining tight
upper bounds (left) and tight lower bounds (right)
as provided by Observations 1 and 2

|π∗
s,t| ≤ |πs,t| for all paths πs,t ∈ Πs,t. Let SPs,t be the set

of paths whose length is equal to dG(s, t).
For simplicity we consider unweighted, undirected graphs,

but all the ideas in our paper can be easily applied to weighted
and/or directed graphs.

Consider an ordered set of d vertices D = 〈u1, u2, . . . , ud〉
of the graph G, which we call landmarks. The main idea is
to represent each other vertex in the graph as a vector of
shortest path distances to the set of landmarks. This is also
called an embedding of the graph. In particular, each vertex
v ∈ V is represented as a d-dimensional vector φ(v):

φ(v) = 〈dG(v, u1), dG(v, u2), ..., dG(v, ud)〉 (1)

For ease of presentation, from now on we will denote the
i-th coordinate of φ(v) by vi, i.e., vi = dG(v, ui).

3.2 Distance bounds
The shortest-path distance in graphs is a metric, and

therefore it satisfies the triangle inequality. That is, given
any three nodes s, u, and t, the following inequalities hold.

dG(s, t) ≤ dG(s, u) + dG(u, t), (2)

dG(s, t) ≥ |dG(s, u) − dG(u, t)| (3)

An important observation that we will use to formulate the
landmark-selection problem is that if u belongs to one of the
shortest paths from s to t, then the inequality (2) holds with
equality.

Observation 1. Let s, t, u be vertices of G. If there ex-

ists a path πs,t ∈ SPs,t so that u ∈ πs,t then dG(s, t) =
dG(s, u) + dG(u, t).

A similar condition exists for the inequality (3) to be tight,
but in this case, it is required that either s or t are the
“middle” nodes.

Observation 2. Let s, t, u be vertices of G. If there ex-

ists a path πs,u ∈ SPs,u so that t ∈ πs,u, or there ex-

ists a path πt,u ∈ SPt,u so that s ∈ πt,u, then dG(s, t) =
|dG(s, u) − dG(u, t)|.

The situation described in Observations 1 and 2 is shown in
Figure 1.

3.3 Using landmarks
Given a graph G with n vertices and m edges, and a set

of d landmarks D, we precompute the distances between
each vertex in G and each landmark. The cost of this offline
computation is d BFS traversals of the graph: O(md).

Recall that our task is to compute dG(s, t) for any two
vertices s, t ∈ V . Due to Inequalities (2) and (3), we have

max
i

|si − ti| ≤ dG(s, t) ≤ min
j

{sj + tj}.

In other words, the true distance dG(s, t) lies in the range
[L, U ], where L = maxi |ti − si| and U = minj{sj + tj}.



Notice that one landmark may provide the best lower bound
and another the best upper bound. Any value in the range
[L, U ] can be used as an estimate d̃(s, t) for the real value of
dG(s, t). Some choices include using the upper bound

d̃u(s, t) = U,

using the lower bound

d̃l(s, t) = L,

the middle point

d̃m(s, t) =
L + U

2
,

or the geometric mean

d̃g(s, t) =
√

L · U.

Notice that in all cases the estimation is very fast, as only
O(d) operations need to be performed, and d can be thought
of as being a constant, or a logarithmic function of the size
of the graph.

Our experiments indicate that the “upper bound” esti-
mates d̃u(s, t) = U work much better than the other types
of estimates, so, in the rest of the paper, we focus on the
upper-bound estimates. We only comment briefly on lower-
bound estimates later in Section 4.4.

As follows by Observation 1, the approximation d̃u(s, t)
is exact if there exists a landmark in D, which is also in a
shortest path from s to t. This motivates the definition of
coverage:

Definition 1. We say that a set of landmarks D covers
a specific pair of vertices (s, t) if there exists at least one

landmark in D that lies in one shortest path from s to t.

Our landmark-selection problem is formulated as follows.

Problem 1 (landmarksd). Given a graph G = (V, E)
select a set of d landmarks D ⊆ V so that the number of pairs

of vertices (s, t) ∈ V × V covered by D is maximized.

A related problem is the following

Problem 2 (landmarks-cover). Given a graph G =
(V, E) select the minimum number of landmarks D ⊆ V so

that all pairs of vertices (s, t) ∈ V × V are covered.

3.4 Selecting good landmarks
To obtain some intuition about landmark selection, con-

sider the landmarksd problem for d = 1. The best land-
mark to select, is a vertex that it is very central in the graph,
and many shortest paths pass through it. In fact, selecting
the best landmark is related to finding the vertex with the
highest betweenness centrality [15].

To remind the reader the definition of betweenness cen-
trality, given two vertices s and t, let σst denote the number
of shortest paths from s to t. Also let σst(u) denote the
number of shortest paths from s to t that some u ∈ V lies
on. The betweenness centrality of the vertex u is defined as

CB(u) =
X

s 6=u 6=t∈V

σst(u)

σst

(4)

The fastest known algorithms to compute betweenness cen-
trality exactly are described by Brandes [7]. They extend
well-known all-pairs-shortest-paths algorithms [9]. The time

cost O(nm) for unweighted graphs and O(nm+n2 log n) for
weighted graphs. Additionally, Bader et al. [4] discuss how
to approximate betweenness centrality by random sampling.

For our problem, consider a modified definition of be-
tweenness centrality according to which we define Ist(u) to
be 1 if u lies on at least one shortest path from s to t, and
0 otherwise. We then define

C(u) =
X

s 6=u 6=t∈V

Ist(u). (5)

It follows immediately that the optimal landmark for the
landmarksd problem with d = 1 is the vertex that maxi-
mizes C(u). Our modified version C(u) can be computed as
efficiently as CB(u) by modifying Brandes’ algorithm [7].

3.5 Problem complexity and approximation
algorithms

Both of the problems landmarksd and landmarks-cover
are NP-hard. An easy reduction for the landmarks-cover
problem can be obtained from the vertex-cover problem.

Theorem 1. landmarks-cover is NP-hard.

Proof. We consider the decision version of the problems
landmarks-cover and vertex-cover. The latter prob-
lem is defined as follows: given a graph G, and an integer k,
decide if there is a subset of vertices V ′ ⊆ V of size at most
k so that for all edges (u, v) ∈ E either u ∈ V ′ or v ∈ V ′.
Transform an instance of vertex-cover to an instance of
landmarks-cover. Consider a solution D for landmarks-
cover. Consider now the set of all 1-hop neighbors and ob-
serve that each pair is connected by a unique shortest path
of length 1 (i.e. an edge). Since all pairs of vertices are cov-
ered, so are 1-hop neighbors, therefore the edges of E are also
covered by D, therefore, D is a solution to vertex-cover.
Conversely, consider a solution V ′ for vertex-cover. Con-
sider a pair of vertices (s, t) ∈ V ×V , and any shortest path
πs,t between them. Some vertices of V ′ should be on the
edges of the path πs,t, and therefore V ′ is also a solution to
landmarks-cover.

As a consequence, landmarksd is also NP-hard.
Next we describe a polynomial-time approximation solu-

tion to the landmark-selection problem. The main idea is to
map the problem to set-cover problem. Given the graph
G = (V, E), we consider a set of elements U = V × V and a
collection of sets S, so that each set Sv ∈ S corresponds to a
vertex v ∈ V . A set Sv contains an element (s, t) ∈ U if v lies
on a shortest path from s to v. Thus, solving the set-cover
problem on (U,S) with the greedy algorithm [8], we obtain a
O(log n)-approximation to landmarks-cover problem and
a (1 − 1/e)-approximation to landmarksd problem.

However, the running time of the above approximation
algorithm is O(n3), which is unacceptable for the size of
graphs that we consider in this paper.

The suggested strategies of the next section are motivated
by the observations made in this section regarding properties
of good landmarks.

4. LANDMARK-SELECTION STRATEGIES
This section describes our landmark-selection strategies.
The baseline scalable strategy is to select landmarks at

random [36, 24, 31]. The strategies we propose are moti-
vated by the discussion in the previous section. On a high



level, the idea is to select as landmarks“central”nodes of the
graph, so that many shortest paths are passing through. We
use two proxies for selecting central nodes: (i) high-degree
nodes and (ii) nodes with low closeness centrality, where
the closeness centrality of a node u is defined as the average
distance 1

n

P

v
dG(u, v) of u to other nodes in the graph.

In order to cover many different pairs of nodes, we need to
spread the landmarks throughout the graph. In accordance,
we propose two improvements for our strategies: (i) a con-

strained variant, where we do not select landmarks that are
too close to each other, and (ii) a partitioning variant, where
we first partition the graph and then select landmarks from
different partitions.

4.1 Basic strategies
Random: The baseline landmark-selection strategy consists
of sampling a set of d nodes uniformly at random from the
graph.

Degree: We sort the nodes of the graph by decreasing de-
gree and we choose the top d nodes. Intuitively, the more
connected a node is, the higher the chance that it partici-
pates in many shortest paths.

Centrality: We select as landmarks the d nodes with the
lowest closeness centrality. The intuition is that the closer a
node appears to the rest of the nodes the bigger the chance
that it is part of many shortest paths.

Computing the closeness centrality for all nodes in a graph
is an expensive task, so in order to make this strategy scal-
able to very large graphs, we resort to computing centrali-
ties approximately. Our approximation works by selecting
a sample of random seed nodes, performing a BFS com-
putation from each of those seed nodes, and recording the
distance of each node to the seed nodes. Since the seeds
are selected uniformly at random and assuming that graph
distances are bounded by a small number (which is true
since real graphs typically have small diameter), we can use
the Hoeffding inequality [21] to show that we can obtain
arbitrarily good approximation to centrality by sampling a
constant number of seeds.

4.2 Constrained strategies
Our goal is to cover as many pairs as possible. Using

a basic strategy such as the ones described above, it may
occur that the second landmark we choose covers a set of
pairs that is similar to the one covered by the first, and thus
its contribution to the cover is small.

The constrained variant of our strategies depends on a
depth parameter h. We first rank the nodes according to
some strategy (e.g., highest degree or lowest closeness cen-
trality). We then select landmarks iteratively according to
their rank. For each landmark l selected, we discard from
consideration all nodes that are at distance h or less from l.
The process is repeated until we select d landmarks.

We denote our modified strategies by Degree/h and
Centrality/h.

For the experiments reported in the next section we use
h = 1, 2, 3 and we obtain the best results for h = 1. So, in
the rest of the paper, we only consider this latter case.

4.3 Partitioning-based strategies
In order to spread the landmarks across different parts of

the graph, we also suggest partitioning the graph using a fast
graph-partitioning algorithm (such as Metis [23]) and then

select landmarks from the different partitions. We suggest
the following partitioning-based strategies.

Degree/P: Pick the node with the highest degree in each
partition.

Centrality/P: Pick the node with the lowest centrality in
each partition.

Border/P: Pick nodes close to the border of each partition.
We do so by picking the node u with the largest b(u) in each
partition, according to the following formula:

b(u) =
X

i∈P,u∈p,i6=p

di(u) · dp(u), (6)

where P is the set of all partitions, p is the partition that
node u belongs to, and di(u) is the degree of u with respect
to partition i (i.e., the number of neighbors of u that lie
in partition i). The intuition of the above formula is that
if a term di(u) · dp(u) is large, then node u lies potentially
among many paths from nodes s in partition i to nodes t in
partition p: such (s, t) pairs of nodes have distance at most 2,
and since they belong to different clusters most likely there
are not direct edges for most of them. For completeness, we
remark that our experiments in all graphs, indicate that no
significant improvement can be obtained by more complex
strategies that combine both partitioning and constrained
strategies.

4.4 Estimates using the lower bounds
As mentioned in Section 3.3, values d̃l(s, t), d̃m(s, t), and

d̃g(s, t) can also be used for obtaining estimates for the short-
est path length dG(s, t).

Following Observation 2, landmarks that give good lower-
bound estimates d̃l(s, t) are nodes on the “periphery” of the
graph, so that many graph nodes are on a shortest path be-
tween those landmarks and other nodes. Most of the strate-
gies we discuss above are optimized to give good upper-
bound landmarks, by selecting central nodes in the graph,
and they perform poorly for lower-bound landmarks.

In fact, random landmarks perform better than any of the
above methods with respect to lower bounds. With the in-
tuition to select landmarks on the periphery of the graph,
we also tried variations of the following algorithm (also de-
scribed in [17]): (i) select the first landmark at random (ii)
iteratively perform a BFS from the last selected landmark
and select the next landmark that is the farthest away from
all selected landmarks so far (e.g., maximizing the minimum
distance to a selected landmark). This algorithm performs
better than selecting landmarks at random, but overall the
performance is still much worse than any of the methods for
upper-bound landmarks.

5. EXPERIMENTAL EVALUATION
We present experimental results in terms of efficiency, ac-

curacy and comparison to existing work for five datasets.

5.1 Datasets
In order to demonstrate the robustness of our methods

and to show their performance in practice, we present ex-
periments with five real-world datasets. The first four are
anonymized datasets obtained from various sources, namely
Flickr, Yahoo! Instant Messenger (Y!IM), and DBLP. The
last one is a document graph from the Wikipedia (nodes
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Figure 2: Distributions of distances in our datasets.

are articles, edges are hyperlinks among them). Figure 2 il-
lustrates the distance distributions. Next, we provide more
details and statistics about the datasets.

Flickr-E: Explicit contacts in Flickr. Flickr is a popular
online-community for sharing photos, with millions of users.
The first graph we construct is representative of its social
network, in which the node set V represent users, an the
edges set E is such that (u, v) ∈ E if and only if a user u
has added user v as his/her contact.

We use a sample of Flickr which with 25M users and 71M
relationships. In order to create a sub-graph suitable for our
experimentation we perform the following steps. First, we
create a graph from Flickr by taking all the contact relation-
ships that are reciprocal. Then, we keep all the users in the
US, UK, and Canada. For all of our datasets, we take the
largest connected component of the final graph.

Flickr-I: Implicit contacts in Flickr. This graph infers
user relationships by observing user behavior. Reciprocal

comments are used as a proxy for shared interest. In this
graph an edge (u, v) ∈ E exists if and only if a user u has
commented on a photo of v, and v has commented on a
photo by u.

DBLP coauthors graph. We extract the DBLP coauthors
graph from a recent snapshot of the DBLP database that
considers only the journal publications. There is an undi-
rected edge between two authors if they have coauthored a
journal paper.

Yahoo! IM graph. We use a subgraph of the Yahoo! In-
stant Messenger contact graph, containing only users who
are active also in Yahoo! Movies. This makes this graph
much sparser than the others. Goyal et al. describe this
dataset in detail [18].

Wikipedia hyperlinks. Apart from the previous four
datasets, which are social and coauthorship graphs, we con-
sider an example of a web graph, the Wikipedia link graph.
This graph represents Wikipedia pages that link to one an-
other. We consider all hyperlinks as undirected edges. We
remove pages having more than 500 hyperlinks, as they are
mostly lists.

Summary statistics about these datasets are presented in
Table 1. The statistics include the effective diameter ℓ0.9 and
the median diameter ℓ0.5, which are the minimum shortest-
path distances at which 90% and 50% of the nodes are found
respectively, and the clustering coefficient c. In these graphs
the degree follows a Zipf distribution in which the probabil-
ity of having degree x is proportional to x−θ; the parameter
θ fitted using Hill’s estimator [19] is also shown in the table.

5.2 Approximation quality
We measure the accuracy of our methods in calculating

shortest paths between pairs of nodes. We randomly choose
500 random pairs of nodes. In the case of the Random

selection strategy we average the results over 10 runs for
each landmark set size. We report for each method and
dataset the average of the approximation error: |ℓ̂ − ℓ|/ℓ

where ℓ is the actual distance and ℓ̂ the approximation.
Figure 3 shows representative results for three datasets.

Observe that using two landmarks chosen with the Cen-
trality strategy in the Flickr-E dataset yields an approx-
imation equal to the one provided by using 500 landmarks
selected by Random. In terms of space and query-time this
results in savings of a factor of 250. For the DBLP dataset
the respective savings are of a factor greater than 25.

Table 2 summarizes the approximation error of the strate-
gies across all 5 datasets studied here. We are using two
landmark sizes: 20 and 100 landmarks; with 100 landmarks
we see error rates of 10% or less across most datasets.

By examining Table 2 one can conclude that even sim-
ple strategies are much better than random landmark selec-
tion. Selecting landmarks by Degree is a good strategy,
but sometimes does not perform well, as in the case of the
Y!IM graph in which it can be worse than random. The
strategies based on Centrality yield good results across
all datasets.

5.3 Computational efficiency
We implemented our methods in C++ using the Boost

and STL Libraries.All the experiments are run on a Linux
server with 8 1.86GHz Intel Xeon processors and 16GB of
memory.

Regarding the online step the tradeoffs are remarkable:
The online step is constant, O(d) per pair where d is the
number of landmarks. In practice it takes less than a mil-
lisecond to answer a query with error less than 0.1.

The offline computation time depends on the strategy. We
break down the various steps of the offline computation in
Table 3. Observe that in some cases the computation time
depends on the time it takes to perform a BFS in each
dataset, shown in Table 1. The offline computation may
include as much as four phases:

Table 1: Summary characteristics of the collections.

Dataset |V | |E| ℓ0.9 ℓ0.5 c θ tBFS

Flickr-E 588K 11M 7 6 0.15 2.0 14s
Flickr-I 800K 18M 7 6 0.11 1.9 23s

Wikipedia 4M 49M 7 6 0.10 2.9 71s
DBLP 226K 1.4M 10 8 0.47 2.7 1.8s
Y!IM 94K 265K 22 16 0.12 3.2 <1s

ℓ0.9: effective diameter, ℓ0.5: median diameter, θ: power-
law coefficient, c: clustering coefficient, tBFS cpu-time in
seconds of a breadth-first search.
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Figure 3: Error of random-pair shortest paths on three datasets.

Table 2: Summary of approximation error across
datasets, using 20 landmarks (top) and 100 land-
marks (bottom).

20 landmarks Fl.-E Fl.-I Wiki DBLP Y!IM

Random 0.41 0.34 0.69 0.41 0.29
Degree 0.13 0.15 0.35 0.17 0.37

Centrality 0.10 0.14 0.21 0.16 0.16
Degree/1 0.15 0.17 0.35 0.15 0.35

Centrality/1 0.16 0.17 0.21 0.14 0.14
Degree/P 0.14 0.22 0.40 0.13 0.16

Centrality/P 0.14 0.20 0.22 0.15 0.14
Border/P 0.14 0.20 0.29 0.15 0.15

100 landmarks Fl.-E Fl.-I Wiki DBLP Y!IM

Random 0.27 0.23 0.61 0.26 0.14
Degree 0.10 0.10 0.22 0.09 0.32

Centrality 0.07 0.09 0.16 0.09 0.11
Degree/1 0.12 0.14 0.23 0.08 0.10

Centrality/1 0.13 0.15 0.16 0.09 0.10
Degree/P 0.13 0.18 0.26 0.11 0.09

Centrality/P 0.11 0.17 0.16 0.08 0.08
Border/P 0.11 0.17 0.20 0.08 0.07

1. A centrality computation is required for the methods
based on Centrality, and it takes S BFSs in which
S is the sample size of the initial seed nodes.

2. A partition of the graph is required for the meth-
ods based on partitioning */P, and in the case of the
Flickr-E dataset (588K nodes, 11M edges) it takes
around 30 seconds using the standard clustering method
of the Metis-4.0 package [23].

3. The selection of the landmarks depends on the strat-
egy, but it takes between 1 and 4 seconds in the Flickr-
E dataset.

4. The embedding implies labelling each node in the graph
with its distance to the landmarks.

The computational time during the indexing is dominated
by the BFS traversals of the graph. S such traversals are
necessary for performing centrality estimations in the algo-
rithms, basically by picking S seed nodes uniformly at ran-
dom and then doing a BFS from those nodes; the centrality
of a node is then estimated as its average distance to the
S seeds. The embedding computation always takes d BFSs.
Note that this step may be parallelized.

Table 3: Indexing time. Partitioning and selecting
times are expressed in wallclock seconds for d = 100
landmarks in the Flickr-E dataset

Method Centrality Partition Select Embed
[tBFS ] [sec] [sec] [tBFS ]

Random - - <1 d

Degree - - <1 d

Centrality S - <1 d

Degree/1 - - <1 d

Centrality/1 S - <1 d

Degree/P - <30 4 d

Centrality/P S <30 4 d

Border/P - <30 4 d

With respect to the memory requirements to store the
index, in all of our datasets more than 99% of the pairs are
at a distance of less than 63, meaning that we can safely use
six bits per landmark and node to store the embeddings.
With 20 landmarks in large a graph of 100 M nodes, we
would use 120 bits (15 bytes) per node. Thus, around 1.5 GB
of memory would be required to store all the embeddings,
which is a very small memory footprint for this application.
For the case that either the landmarks or the nodes are
more and the index needs to resort in the disk, we store
each node’s embedding in a single page. Thus, we perform
one page access at query-time.

5.4 Triangulation
The triangulation performance of random landmarks has

been theoretically analyzed by Kleinberg et al. [24]. In their
paper they prove bounds for the performance of the bound
that support the claim that random landmarks work well in
practice. In this section we provide experimental evidence
that even though selecting landmarks at random makes it
possible to prove bounds on the triangulation task, in all our
datasets the methods we propose outperform Random.

Our methods produce a smaller range within which the
actual distance certainly lies in. For any pair of vertices one
can measure the ratio between the best lower bound and
the best upper bound that can be achieved given a set of
landmarks.

Recall from Section 3.3 that using the landmarks we can
provide both an upper (U) and a lower bound (L) for the
actual shortest path distance. We measure the average ra-



Table 4: Summary of average ratio between L and
U across datasets, using 20 landmarks (top) and 100
landmarks (bottom)

20 landmarks Fl.-E Fl.-I Wiki DBLP Y!IM

Random 0.23 0.24 0.19 0.25 0.35
Degree 0.32 0.27 0.24 0.33 0.24

Centrality 0.31 0.28 0.24 0.31 0.38
Degree/1 0.34 0.30 0.24 0.35 0.26

Centrality/1 0.30 0.29 0.24 0.34 0.40
Degree/P 0.34 0.30 0.23 0.34 0.45

Centrality/P 0.31 0.30 0.24 0.33 0.41
Border/P 0.34 0.30 0.25 0.36 0.44

100 landmarks Fl.-E Fl.-I Wiki DBLP Y!IM

Random 0.32 0.31 0.28 0.36 0.50
Degree 0.39 0.32 0.34 0.44 0.28

Centrality 0.38 0.33 0.32 0.41 0.44
Degree/1 0.40 0.37 0.34 0.47 0.50

Centrality/1 0.38 0.34 0.33 0.43 0.47
Degree/P 0.42 0.38 0.34 0.47 0.58

Centrality/P 0.39 0.35 0.33 0.44 0.53
Border/P 0.42 0.38 0.34 0.46 0.58
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Figure 4: Distributions of L/U ratio

tio (L/U) over all queries and present the results in Table 4.
Observe that Border/P and Degree/P outperform Ran-
dom in all datasets. They also outperform the rest of the
strategies with smaller margins. We note that one needs to
use one or two orders of magnitude more landmarks in Ran-
dom to achieve the accuracy of Border and Degree/P.

A more detailed view is presented in Figure 4. We plot
histograms that reflect the distribution of the L/U ratio for
20 seeds in DBLP and for 100 seeds in Y!IM. Observe that
the volume of the distributions of methods Border and
Degree/P are similar and that they are both clearly closer
to the unit than the respective distribution of Random.

5.5 Comparison with exact methods
We compare our method with state-of-the-art algorithms

(ALT) for computing exact point-to-point shortest paths,
as described by Goldberg and Harrelson [16, 17]. We note
that our methods can be considered as fair competitors with
ALT, since the ALT methods not only compute exact dis-
tances, but they also compute the shortest path itself and
not only its length. Nevertheless, our comparison can be
seen as an illustration on how much one can gain if only the
length of the shortest path is needed and if one is willing to
tolerate small approximation errors.

In brief, ALT methods combine bidirectional Dijkstra traver-
sal, with A* and landmark-based lower bounds. We imple-
mented2 Pohl’s [27] and Ikeda’s [22] algorithm. Landmarks

2Code from [16, 17] is proprietary and not publicly available

Table 5: Comparison with ALT methods.

Ours (10%) Fl.-E Fl.-I Wiki DBLP Y!IM

Method Cent Cent Cent/P Bord/P Bord/P
Landmarks used 20 100 500 50 50
Nodes visited 1 1 1 1 1
Operations 20 100 500 50 50
CPU ticks 2 10 50 5 5

ALT (exact) Fl.-E Fl.-I Wiki DBLP Y!IM

Method Ikeda Ikeda Ikeda Ikeda Ikeda
Landmarks used 8 4 4 8 4
Nodes visited 7245 10337 19616 2458 2162
Operations 56502 41349 78647 19666 8648
CPU ticks 7062 10519 25868 1536 1856

were chosen using Goldberg’s farthest heuristic [17]. Below
we report results only for Ikeda’s algorithm, because it out-
performed Pohl’s algorithm in all of our datasets; the same
result is reported in [16].

The results are summarized in Table 5. For our methods,
we use as many landmarks are needed to bring the error
below 0.1. For ALT, since it is an exact method, we use
the number of landmarks that gives the best performance.
In the rows labeled Operations in Table 5 we report the
number of arithmetic operations during the LB/UB compu-
tations. This measure gives a large advantage to ALT meth-
ods since it disregards costs involving hashing visited nodes,
priority queue maintenance and most importantly random
accesses to nodes. We also present the average number of
CPU ticks, noting that this measure is implementation de-
pendent: our implementation is main memory based and
uses the C++/STL priority queue template.

Table 5 confirms that our techniques outperform the state-
of-the-art for exact Point-to-point SP by several orders of
magnitude according to all measures while suffering a very
small loss in accuracy in all five datasets.

6. APPLICATION TO SOCIAL SEARCH
In this section we describe an application of our method to

network-aware search. In network-aware search the results
of a search are nodes in a graph, and the originating query
is represented by a context node in the graph. The context
node may represent the user issuing the query, or a document
the user was browsing when she issued the query. Nodes that
match the query are ranked using a ranking function that
considers, among other factors, their connection with the
context node; for instance, the ranking function may favor
the results that are topologically close to the context node.

6.1 Problem definition
There are a number of use cases where social search may

be helpful. For instance, a user may be searching on a so-
cial networking site for a person which she remembers only
by the first name. There might be potentially thousands
of matching people, but friends-of-friends would be ranked
higher since they are more likely to be acquaintances of the
query-issuer. As another application consider a user search-
ing for books, music or movies of a certain genre: items
favorited by her friends or friends-of-friends are more likely
to be interesting for her. Yet another application is context-
aware search, where a user is reading a page with a search
form on it (e.g. Wikipedia) and enters a query. Pages linked



to by the original page (or close by in terms of clicks) should
be presented first.

The problem we consider was defined by Vieira et al. [36].
Given a source vertex and a set of matching-vertices that
satisfy the query (which are provided by an inverted index),
rank the matching vertices according to their shortest path
distance from the source vertex.

6.2 Evaluation method
To evaluate the effectiveness of our methods for search,

we need a method for generating search tasks, as well as a
performance metric. For the latter we use precision@k de-
noted by p@k; this is the size of the intersection between
the top k elements returned by our method using approxi-
mate distances, and the top k elements in the result set X,
normalized by k. Given that there might be elements of X
tied by distance, we extend X to include the elements at
the same distance as the k-th element on X, as any of those
elements can be considered a top-k result to the query.

We point out that while this evaluation method emulates a
hypothetical ranking function that uses only the distances,
in most practical settings the distance between two items
should be a component of the ranking function, not a re-
placement for it.

To generate queries and select the matching results we
consider that each element in the graphs has a set of tags or
keywords associated to it. In the case of the Flickr datasets
(both explicit and implicit graphs) tags are naturally pro-
vided by users; a user has a tag if she has tagged at least
one photo with that tag . In the case of the Yahoo! Instant
Messaging graph, we cross the information with the items
users have rated in Yahoo! Movies (we have been provided
with an anonymized dataset in which this information is al-
ready joined), so the tags of a user are the movies she has
rated. In the case of the Wikipedia dataset, the tags are the
words the pages contain. We select words that are neither
uncommon nor trivially common: we pick words that have
document frequency between 1K and 10K. In the case of
DBLP, we use artificial tags. We create random tags and
assign them to 100 random users in the graph.

6.3 Experimental results
Table 6 summarizes the precision at 5 of the strategies for

20 and 100 landmarks. The Random technique is outper-
formed in all datasets, by large margins.

Figure 5 shows how the precision increases by adding more
landmarks. The x-axis is logarithmic so it is clear that re-
turns are diminishing. In any case a few tens of landmarks
are enough for Flickr and a few hundred landmarks for the
other datasets. Results in Table 6 agree with those in Ta-
ble 2 and similar conclusions hold. The constrained Cen-
tral/1 and the partitioning-based Border/P yield con-
sistently good results across all datasets. We note that the
results for other precision measures, such as p@1, p@2,p@10
and p@20, are qualitatively similar to p@5.

As a general observation, the number of landmarks nec-
essary for a good approximation depends much more on the
graph structure than on the graph size. For instance, despite
Y!IM being the smallest graph, it is also the one that ex-
hibits the larger range of distances, as shown in Figure 2. As
expected, on this graph the search task requires more land-
marks to obtain a high precision than on the other graphs.
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Figure 5: Precision at 5 for the social search task

Table 6: Summary of precision at 5 across datasets,
using 20 and 100 landmarks

20 landmarks Fl.-E Fl.-I Wiki DBLP Y!IM

Random 0.84 0.82 0.42 0.60 0.29
Degree 0.98 0.96 0.46 0.77 0.23
Central 0.98 0.97 0.58 0.77 0.43
Degree/1 0.97 0.95 0.46 0.78 0.23
Central/1 0.97 0.94 0.58 0.80 0.46
Degree/P 0.97 0.90 0.50 0.78 0.45
Central/P 0.97 0.92 0.57 0.78 0.46
Border/P 0.98 0.92 0.53 0.79 0.46

100 landmarks Fl.-E Fl.-I Wiki DBLP Y!IM

Random 0.86 0.80 0.59 0.65 0.39
Degree 0.99 0.98 0.67 0.88 0.25
Central 0.99 0.98 0.69 0.87 0.51
Degree/1 0.98 0.97 0.67 0.92 0.56
Central/1 0.98 0.96 0.68 0.89 0.58
Degree/P 0.98 0.90 0.65 0.88 0.65
Central/P 0.97 0.95 0.71 0.89 0.64

Border 0.99 0.95 0.68 0.91 0.69

6.4 External memory implementation
In this section we consider the case that the distances of

the graph nodes to the landmarks do not fit in the main
memory and need to be stored on disk. Recall that the
query returns an answer set of relevant nodes. These nodes
are only known at query-time. Depending on the query se-
lectivity s (i.e., the size of the answer set) we may follow
different strategies: if s is small, the methodology of Sec-



tion 5.3 applies; if the index is stored in external memory,
we need to perform s page accesses per query.

If s is large then we follow a different strategy. First, ob-
serve that for large s it is meaningful to retrieve the top-k for
some k ≪ s. To that end, we use ideas similar to the Thresh-

old Algorithm (TA) algorithm, introduced in the seminal
work of Fagin et al. [12]. The application of TA algorithms
is as follows: nodes and their distance to a given landmark
are stored in ascending order. There is one such list per
landmark. We visit the lists sequentially using only sorted

access until we get the top-k relevant answers. There are
two important observations. First, during query-processing,
a list (i.e., landmark) may be pruned as a whole using the
greatest distance in the current top-k set as a threshold.
Second, this approach employs mainly sequential access in
disk which is much faster than random access.

As a final remark, consider a system that implements
the social search task. Recall that Dijkstra/BFS will very
quickly retrieve nodes with small distance from the query-
node, but its efficiency degrades very fast in social-network
like graphs. Contrary to that, embedding based methods
are very efficient, especially for low selectivity queries. Thus
a hybrid approach which combines both would optimize ef-
ficiency; its details are not in the scope of this work.

7. CONCLUSIONS AND FUTURE WORK
Motivated by applications such as context-aware web search

and socially-sensitive search in social networks, we studied
how to do fast and accurate distance estimation on real-
world massive graphs using landmarks. We characterized
the problem of optimal landmark selection and proved that
it is NP-hard. We described several strategies for landmark
selection which outperform the current approximate stan-
dard Random and the state-of-the-art exact techniques by
large margins according to our extensive experimentation.
In the simplest class of strategies, Centrality appears to
be much more robust than Degree. Among the more elabo-
rate strategies, the ones based on partitioning, in particular
Border/P, exhibit consistent savings in computational cost
across all datasets. When applied to the task of context-
aware search these methods yield results of high precision.

In our on-going work we are studying methods for an ef-
fective synergy of upper and lower bounds. We also plan to
investigate the issue of dynamic data structures and how to
deal with frequent network updates. A key aspect is to in-
vestigate methods to provide estimates in grams for distance
functions other than the shortest path distance, which could
also be used as primitives in context and/or social aware
search tasks.
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